

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

May 2017

FODM3011, FODM3012, FODM3023, FODM3052, FODM3053 4-Pin Full Pitch Mini-Flat Package Random-Phase Triac Driver Output Optocouplers

Features

- Compact 4-pin Surface Mount Package (2.4 mm Maximum Standoff Height)
- · Peak Blocking Voltage
 - 250V (FODM301X)
 - 400V (FODM302X)
 - 600V (FODM305X)
- Safety and Regulatory Approvals:
 - UL1577, 3,750 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage

Applications

- · Industrial Controls
- Traffic Lights
- · Vending Machines
- Solid State Relay
- Lamp Ballasts
- · Solenoid/Valve Controls
- Static AC Power Switch
- Incandescent Lamp Dimmers
- Motor Control

Description

The FODM301X, FODM302X, and FODM305X series consists of a GaAs infrared emitting diode driving a silicon bilateral switch housed in a compact 4-pin miniflat package. The lead pitch is 2.54 mm. They are designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 V/240 V operations.

Functional Schematic

ANODE 1 ANODE 1 ANODE 2 AMAIN TERMINAL MAIN TERMINAL

Figure 1. Functional Schematic

Package Outlines

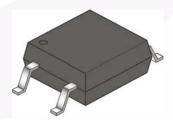


Figure 2. Package Outlines

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–III
Climatic Classification		40/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	904	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1060	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	565	V_{peak}
V_{IOTM}	Highest Allowable Over-Voltage	6000	V_{peak}
	External Creepage	≥ 5	mm
	External Clearance	≥ 5	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
T _S	Case Temperature ⁽¹⁾	150	°C
I _{S,INPUT}	Input Current ⁽¹⁾	200	mA
P _{S,OUTPUT}	Output Power ⁽¹⁾	300	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V ⁽¹⁾	> 10 ⁹	Ω

Note:

1. Safety limit values – maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter		Value	Unit
T _{STG}	Storage Temperature		-55 to +150	°C
T _{OPR}	Operating Temperature		-40 to +100	°C
T_J	Junction Temperature		-40 to +125	°C
T _{SOL}	Lead Solder Temperature		260 for 10 sec	°C
EMITTER				
I _F (avg)	Continuous Forward Current		60	mA
I _F (pk)	Peak Forward Current (1 µs pulse, 300 pps.	.)	1	Α
V _R	Reverse Input Voltage		3	V
P _D	Power Dissipation (No derating required over	er operating temp. range)	100	mW
DETECTOR				
I _{T(RMS)}	On-State RMS Current		70	mA (RMS)
		FODM3011, FODM3012	250	
V_{DRM}	Off-State Output Terminal Voltage	FODM3022, FODM3023	400	V
		FODM3052, FODM3053	600	
P_{D}	Power Dissipation (No derating required over	er operating temp. range)	300	mW

Electrical Characteristics

 $T_A = 25$ °C unless otherwise specified.

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Тур.	Max.	Unit
EMITTER							
V _F	Input Forward Voltage	I _F = 10 mA	All		1.20	1.50	V
I _R	Reverse Leakage Current	$V_R = 3 \text{ V}, T_A = 25^{\circ}\text{C}$	All		0.01	100	μΑ
DETECTO	R						
I _{DRM}	Peak Blocking Current Either Direction	Rated V_{DRM} , $I_F = 0^{(2)}$	All		2	100	nA
dV/dt	Critical Rate of Rise of Off-State Voltage	I _F = 0 (Figure 8) ⁽³⁾	FODM3011, FODM3012, FODM3022, FODM3023		10		V/µs
	Ū		FODM3052, FODM3053	1,000			

Notes:

- 2. Test voltage must be applied within dv/dt rating.
- 3. This is static dv/dt. See Figure 1 for test circuit Commutating dv/dt is function of the load-driving thyristor(s) only.

Transfer Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Тур.	Max.	Unit
I I+ ILED Irigger Current I	ED Trigger Current Main Terminal Voltage = 3 V ⁽⁴⁾ FOE FOE	FODM3011, FODM3022, FODM3052			10	mA	
		FODM3012, FODM3023, FODM3053			5	ША	
l _Η	Holding Current, Either Direction		All		450		μA
V_{TM}	Peak On-State Voltage Either Direction	I _{TM} = 100 mA peak	All		2.2	3	V

Notes:

4. All devices are guaranteed to trigger at an I_F value of less than or equal to the max I_{FT} specification. For optimum operation over temperature and lifetime of the device, the LED should be biased with an I_F that is at least 50% higher than the maximum I_{FT} specification. The I_{FT} should not exceed the absolute maximum rating of 60 mA. Example: For FODM0353M, the minimum I_F bias should be 5 mA x 150% = 7.5 mA

Isolation Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Тур.	Max.	Unit
V _{ISO}	Steady State Isolation Voltage	1 Minute, R.H. = 40% to 60%	All	3,750			VAC _{RMS}

Typical Performance Characteristics

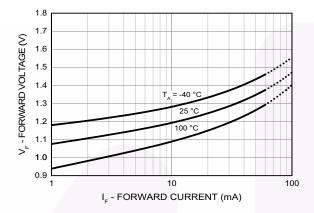


Fig 3. LED Forward Voltage vs. Forward Current

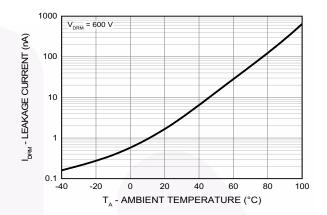


Fig 4. Leakage Current vs. Ambient Temperature

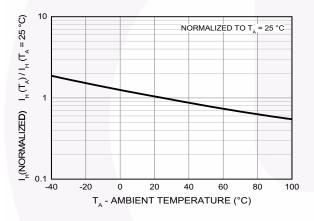


Fig 5. Normalized Holding Current vs. Ambient Temperature

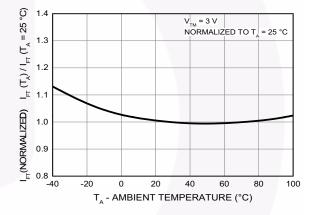
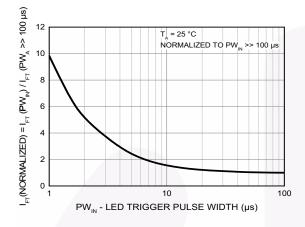



Fig 6. Normalized Trigger Current vs. Ambient Temperature

Typical Performance Characteristics (Continued)

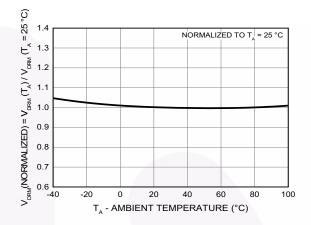


Fig 7. LED Current Required to Trigger vs. LED Pulse Width

Fig 8. Normalized Off-State Output Terminal Voltage vs. Ambient Temperature

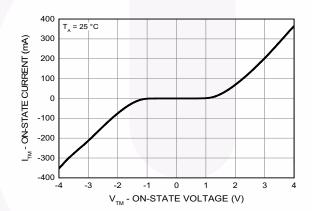


Fig 9. On-State Characteristics

Typical Application Information

intended to be a trigger device only.

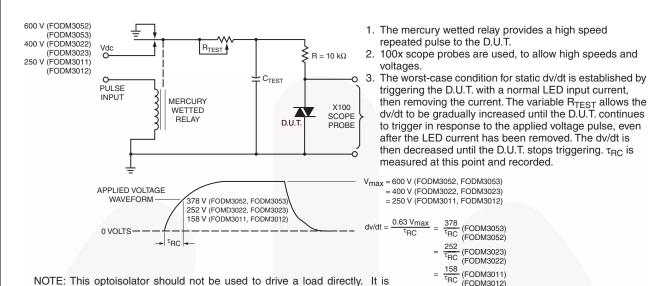


Figure 10. Static dv/dt Test Circuit

(FODM3023) (FODM3022) (FODM3011)

(FODM3012)

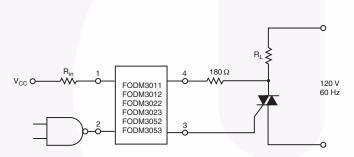


Figure 11. Resistive Load

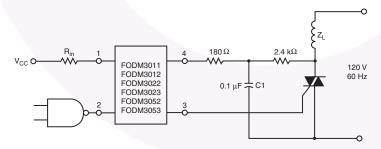
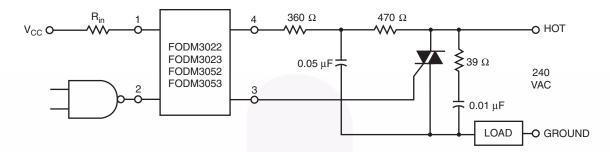
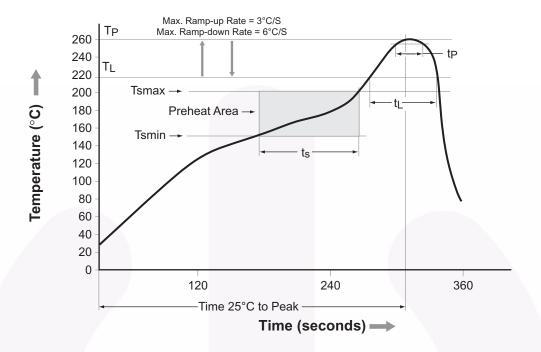



Figure 12. Inductive Load with Sensitive Gate Triac ($I_{GT} \le 15 \text{ mA}$)

Typical Application Information (Continued)



In this circuit the "hot" side of the line is switched and the load connected to the cold or ground side.

The 39 Ω resistor and 0.01 μ F capacitor are for snubbing of the triac, and the 470 Ω resistor and 0.05 μ F capacitor are for snubbing the coupler. These components may or may not be necessary depending upon the particular and load used.

Figure 13. Typical Application Circuit

Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60-150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

Ordering Information

Part Number	Package	Packing Method
FODM3011	Full Pitch Mini-Flat 4-Pin	Tube (100 units)
FODM3011R2	Full Pitch Mini-Flat 4-Pin	Tape and Reel (2500 Units)
FODM3011V	Full Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	Tube (100 Units)
FODM3011R2V	Full Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	Tape and Reel (2500 Units)

Note:

The product orderable part number system listed in this table also applies to the FODM3012, FODM3022, FODM3023, FODM3052, and FODM3053 products.

Marking Information

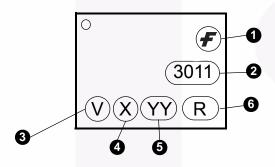
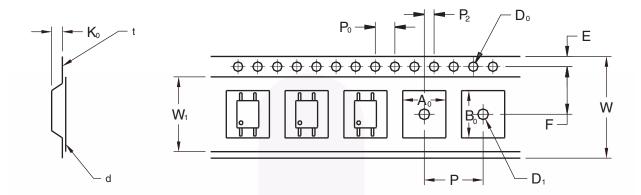
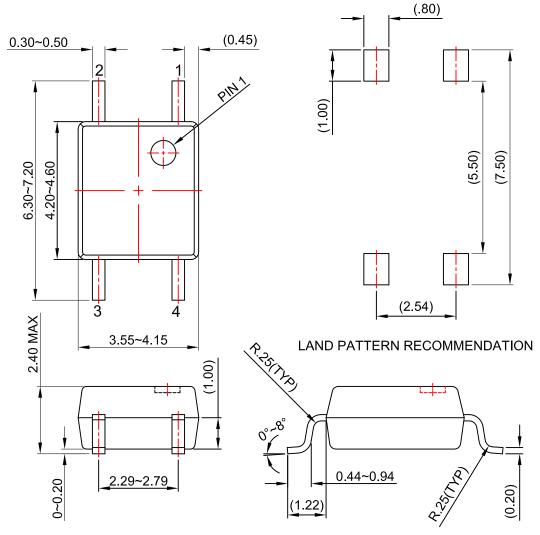



Figure 14. Top Mark


Table 1. Top Mark Definitions

1	Fairchild Logo
2	Device Number
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	One-Digit Year Code, e.g., "6"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code

Tape Specifications

		2.54 Pitch
Description	Symbol	Dimensions
Tape Width	W	12.00±0.4
Tape Thickness	t	0.35±0.02
Sprocket Hole Pitch	P ₀	4.00±0.20
Sprocket Hole Dia.	D ₀	1.55±0.20
Sprocket Hole Location	E	1.75±0.20
Pocket Location	F	5.50±0.20
	P ₂	2.00±0.20
Pocket Pitch	Р	8.00±0.20
Pocket Dimension	A ₀	4.75±0.20
	B ₀	7.30±0.20
	K ₀	2.30±0.20
Pocket Hole Dia.	D ₁	1.55±0.20
Cover Tape Width	W ₁	9.20
Cover Tape Thickness	d	0.065±0.02
Max. Component Rotation or Tilt		20° max
Devices Per Reel		2500
Reel Diameter		330 mm (13")

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVISION: MKT-MFP04Crev3.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Speed Optocouplers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

6N136F PS8502L2-AX ACNW261L-000E ACPL-344JT-000E ACPL-K49T-500E ACPL-K74T-000E ACPL-K75T-000E ACPL-W21L-560E ACPL-K44T-500E TLP187(TPL,E(T TLP2601(TP1,F) 610737H 6N137A-X001 6N137A-X017T 6N139-X007T HCPL2630M HCPL2731SM TLP555(F) HCPL2630SM PS2841-4A-F3-AX PS9817A-1-F3-AX PS9821-2-F3-AX ORPC-817D ORPC-817M/C ORPC-817M/B PT17-51C/L129(BIN2) TLP521-4GBSM UMW817C 6N137S1(TA) TLP521GB TLP521GB-S PS2501 PS2501-S TLP785GB TLP785GB-S LTV-214-G TLP2766A(E TLP2766A(LF4,E LCR-0202 EL814S1(TA)-V PC817X4NSZ2B CYPC817 OR-MOC3023 TLP267J(TPL,E(T TLP109(TPL,E(O EL2514S1(TU)(CLW)-G EL816S2(C)(TU)-F TLP281-4 MOC3023M ACPL-K49T-060E