

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

June 2009

FPF1015/6/7/8

IntelliMAX™ 1V Rated Advanced Load Management Products

Features

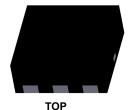
- 0.8 to 1.8V Input Voltage Range
- Typical $R_{DS(ON)} = 34m\Omega @ V_{ON} V_{IN} = 2.0V$
- Output Discharge Function
- Internal Pull down at ON Pin
- Accurate Slew Rate Controlled Turn-on time
- Low < 1µA Quiescent Current
- ESD Protected, above 8000V HBM, 2000V CDM
- RoHS Compliant
- Free from Halogenated Compounds and Antimony Oxides

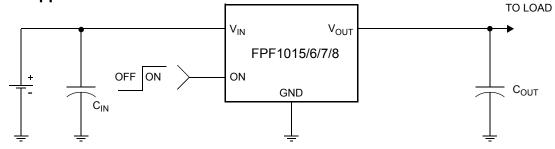
Applications

- PDAs
- Cell Phones
- GPS Devices
- MP3 Players
- Digital Cameras
- Notebook Computers

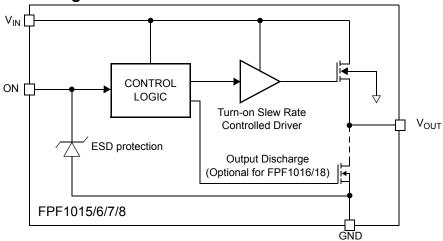
General Description

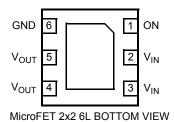
The FPF1015/6/7/8 series is an IntelliMAX advanced slew rate loadswitch offering a very low operating voltage. These devices consist of a $34 m\Omega$ N-channel MOSFET that supports an input voltage up to 2.0V. These slew rate devices control the switch turn-on and prevent excessive in-rush current from the supply rails. The input voltage range operates from 0.8V to 1.8V to fulfill today's lowest Ultraportable Device's supply requirements. Switch control is via a logic input (ON) capable of interfacing directly with low voltage control signals.


The FPF1016 and FPF1018 have an On-Chip pull down allowing for quick and controlled output discharge when switch is turned off. The FPF1015/6/7/8 series is available in a space-saving 2X2 MLP-6L package.



BOTTOM


Typical Application Circuit


Ordering Information

Part	Switch	Turn-on Time	Output Discharge	ON Pin Activity	Package
FPF1015	34mΩ, NMOS	43us	NA	Active HI	MLP 2x2
FPF1016	34mΩ, NMOS	43us	60Ω	Active HI	MLP 2x2
FPF1017	34mΩ, NMOS	165us	NA	Active HI	MLP 2x2
FPF1018	34mΩ, NMOS	165us	60Ω	Active HI	MLP 2x2

Functional Block Diagram

Pin Configuration

Pin Description

Pin	Name	Function		
1	ON	ON/OFF Control Input, 2nd Supply		
2, 3	V _{IN}	Supply Input: Input to the power switch		
4, 5	V _{OUT}	Switch Output.		
6	GND	Ground		

Absolute Maximum Ratings

Parameter	Min	Max	Unit	
V _{IN} , V _{OUT} to GND	-0.3	2	V	
V _{ON} to GND	-0.3	4.2	V	
Maximum Continuous Switch Current		1.5	Α	
Power Dissipation @ T _A = 25°C (Note 1)		1.2	W	
Operating Temperature Range	-40	85	°C	
Storage Temperature	-65	150	°C	
Thermal Resistance, Junction to Ambient		86	°C/W	
Electrostatic Discharge Protection	НВМ	8000		V
Lieutostatic Discharge i Totection	CDM	2000		V

Recommended Operating Range

Parameter	Min	Max	Unit	
V _{IN}	0.8	1.8	V	
Ambient Operating Temperature, T _A	-40	85	°C	

Note 1: Package power dissipation on 1square inch pad, 2 oz. copper board

Electrical Characteristics

 V_{IN} = 0.8 to 1.8V, T_A = -40 to +85°C unless otherwise noted. Typical values are at V_{IN} = 1.8V and T_A = 25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Basic Operation							
Operating Voltage	V _{IN}		0.8		1.8	V	
ON input Voltage	V _{ON(MIN)}	V _{IN} = 0.8V	1.8	2.8	4.0	V	
ON input Voltage	V _{ON(MAX)}	V _{IN} = 1.8V(Note2)	2.8	3.8	4.0	V	
Operating Current	I _{CC}	V _{IN} = 1V, V _{ON} = 3.3V, V _{OUT} = Open			1	μΑ	
Quiescent Current	IQ	V _{IN} = 1V, V _{ON} = V _{OUT} = Open			2	μΑ	
Off Switch Current	I _{SWOFF}	V_{IN} = 1.8V, V_{ON} = GND, V_{OUT} = GND			2	μA	
On Posistanco	R _{ON}	V _{IN} = 1V, V _{ON} = 3V, I _{LOAD} = 1A, T _A = 25°C		34	45	- mΩ	
On-Resistance		V _{IN} = 1V, V _{ON} = 2.3V, I _{LOAD} = 1A, T _A = 25°C		41	55		
Output Pull Down Resistance	R _{PD}	V_{IN} = 1V, V_{ON} = 0V, T_{A} = 25°C, I_{LOAD} = 1mA, FPF1016, FPF1018		60	120	Ω	
ON Input Logic Low Voltage	V	V_{IN} = 0.8V, R_{LOAD} = 1K Ω			0.3	V	
ON Input Logic Low Voltage	V _{IL}	V_{IN} = 1.8V, R_{LOAD} = 1K Ω			0.8		
ON Input Leakage		V _{ON} = V _{IN} or GND	-1		1	μΑ	
Dynamic ($V_{IN} = 1.0V, V_{ON} = 3$.0V, T _A = 25°	C)					
		FPF1015, FPF1016, R_L = 500Ω, C_L = 0.1μF		28		μs	
V Diag Time	_	FPF1017, FPF1018, R_L = 500Ω, C_L = 0.1μF		114			
V _{OUT} Rise Time	T _R	FPF1015, FPF1016, $R_L = 3.3Ω$, $C_L = 10μF$		38			
		FPF1017, FPF1018, R_L = 3.3Ω, C_L = 10μF		155			
	T _{ON}	FPF1015, FPF1016, R_L = 500Ω, C_L = 0.1μF		43		μs	
Turn ON		FPF1017, FPF1018, R_L = 500Ω, C_L = 0.1μF		165			
Tulli ON		FPF1015, FPF1016, R_L = 3.3Ω, C_L = 10μF		58			
		FPF1017, FPF1018, R_L = 3.3Ω, C_L = 10μF		228			
		FPF1015, FPF1017, R_L = 500Ω, C_L = 0.1μF		105			
V Fall Time	_	FPF1016, FPF1018, R_{PD} = 60Ω, R_{L} = 500Ω, C_{L} = 0.1μF		15			
V _{OUT} Fall Time	T _F	FPF1015, FPF1017, R_L = 3.3Ω, C_L = 10μF		80		μs	
		FPF1016, FPF1018 R_{PD} = 60Ω, R_{L} = 3.3Ω, C_{L} = 10μF		74			
		FPF1015, FPF1017, R_L = 500Ω, C_L = 0.1μF		150			
Turn Off	_	FPF1016, FPF1018 R_{PD} = 60Ω, R_{L} = 500Ω, C_{L} = 0.1μF		53		- μs	
Turn Off	T _{OFF}	FPF1015, FPF1017, R_L = 3.3Ω, C_L = 10μF		102			
		FPF1016, FPF1018 R_{PD} = 60Ω, R_{L} = 3.3Ω, C_{L} = 10μF		96			

Note 2: V_{ON(MAX)} is limited by the absolute rating.

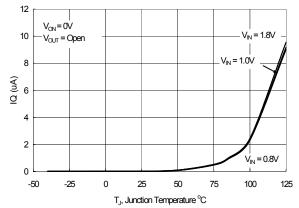


Figure 2. Quiescent Current vs. Temperature

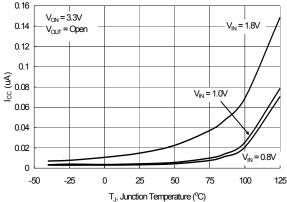


Figure 3. Operating Current vs. Temperature

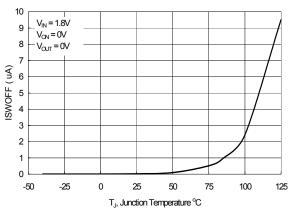
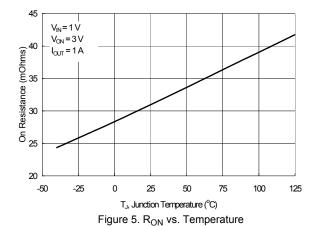



Figure 4. Off Switch Current vs. Temperature

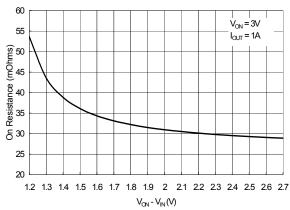
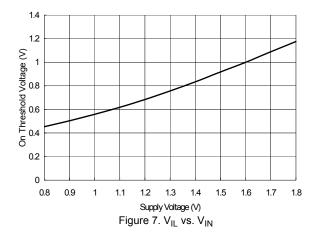
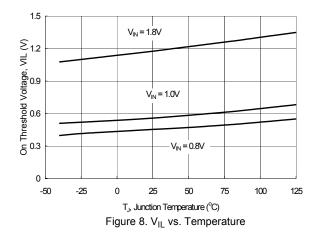




Figure 6. R_{ON} vs. V_{ON} - V_{IN}

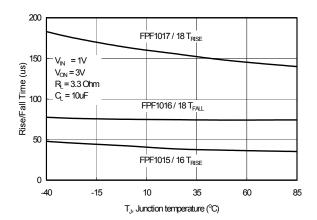


Figure 9. T_{RISE}/T_{FALL} vs. Temperature

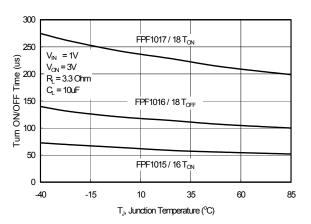


Figure 10. T_{ON}/T_{OFF} vs. Temperature

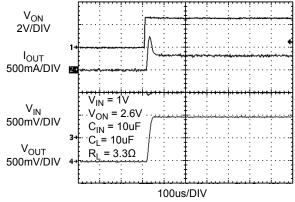


Figure 11. FPF1015 / 16 Turn ON response

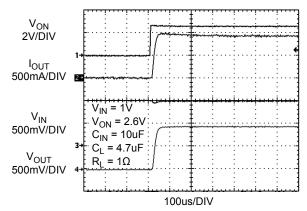


Figure 12. FPF1015 / 16 Turn ON response

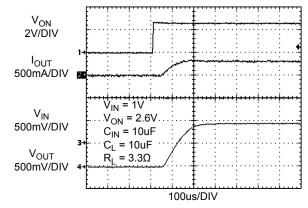


Figure 13. FPF1017 / 18 Turn On response

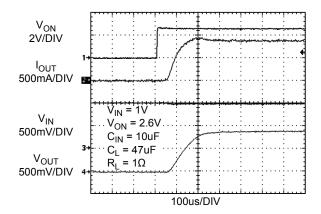


Figure 14. FPF1017 / 18 Turn On response

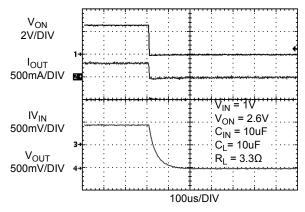


Figure 15. FPF1015 / 17 Turn OFF response

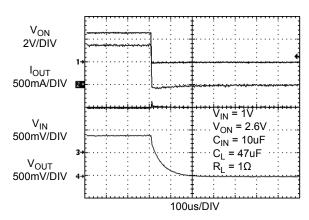


Figure 16. FPF105 / 17 Turn OFF response

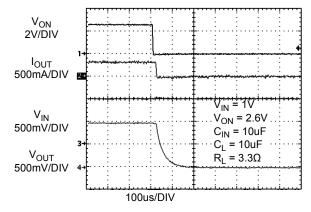


Figure 17. FPF1016 / 18 Turn OFF response

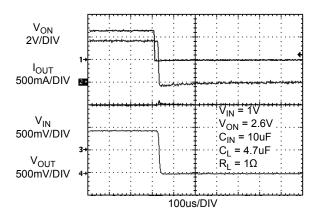


Figure 18. FPF1016 / 18 Turn OFF response

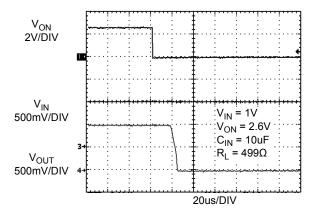
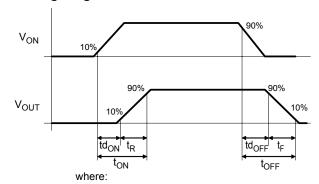


Figure 19. FPF1016 / 18 Output Pull Down response

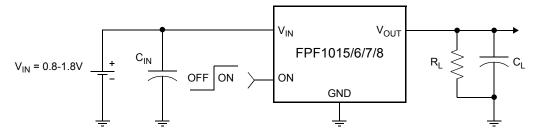
Description of Operation


The FPF1015/6/7/8 are low $R_{DS(ON)}$ N-Channel load switches with controlled turn-on. The core of each device is a $34m\Omega$ (V $_{IN}$ = 1V, V $_{ON}$ = 3V) N-Channel MOSFET and is customized for a low input operating range of 0.8 to 1.8V. The ON pin controls the state of the switch.

The FPF1016 and FPF1018 contain a $60\Omega(typ)$ on-chip resistor which is connected internally from V_{OUT} to GND for quick output discharge when the switch is turned off.

On/Off Control

The ON pin is active high and it controls the state of the switch. Applying a continuous high signal will hold the switch in the ON state. In order to minimize the switch on resistance, the ON pin voltage should exceed the input voltage by 2V. This device is compatible with a GPIO (General Purpose Input/Output) port, where the logic voltage level can be configured to $4V \geq V_{ON} \geq V_{IN} + 2V$ and power consumed is less than $1\mu A$ in steady state.


Timing Diagram

 $\begin{array}{lll} \text{td}_{\text{ON}} &=& \text{Delay On Time} \\ t_{\text{R}} &=& V_{\text{OUT}} \, \text{Rise Time} \\ t_{\text{ON}} &=& \text{Turn On Time} \\ \text{td}_{\text{OFF}} &=& \text{Delay Off Time} \\ t_{\text{F}} &=& V_{\text{OUT}} \, \text{Fall Time} \\ t_{\text{OFF}} &=& \text{Turn Off Time} \\ \end{array}$

Application Information

Typical Application

Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns-on, a capacitor must be placed between $V_{\rm IN}$ and GND. For minimized voltage drop, especially when the operating voltage approaches 1V and a fast slew rate part (FPF1015 and FPF1016) is selected, a $10\mu F$ ceramic capacitor should be placed close to the $V_{\rm IN}$ pins. Higher values of $C_{\rm IN}$ can be used to further reduce the voltage drop during higher current modes of operation.

Output Capacitor

A 0.1 μ F capacitor, C_L, should be placed between V_{OUT} and GND. This capacitor will prevent parasitic board inductance from forcing V_{OUT} below GND when the switch turns-off. If the application has a capacitive load, the FPF1016 and FPF1018 can be used to discharged that load through an on-chip output discharge path.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces or large copper planes for all pins $(V_{IN},\ V_{OUT},\ ON$ and GND) will help minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

Improving Thermal Performance

An improper layout could result in higher junction temperature. This concern applies when the current is at its continuous maximum value and is then switched into a large capacitive load that introduces a large transient current. Since the FPF1015/6/7/8 does not have thermal shutdown capability, a proper layout is essential to improving power dissipation of the switch in transient events and prevents the switch from exceeding the maximum absolute power dissipation of 1.2W.

The following techniques have been identified to improve the thermal performance of this family of devices. These techniques are listed in order of the significance of their impact.

- 1. Thermal performance of the load switch can be improved by connecting pin7 of the DAP (Die Attach Pad) to the GND plane of the PCB.
- 2. Embedding two exposed through-hole vias into the DAP (pin7) provides a path for heat to transfer to the back GND plane of the PCB. A drill size of Round, 14 mils (0.35mm) with 1-ounce copper plating is recommended to result in appropriate solder reflow. A smaller size hole prevents the solder from penetrating into the via, resulting in device lift-up. Similarly, a larger via-hole consumes excessive solder, and may result in voiding of the DAP.

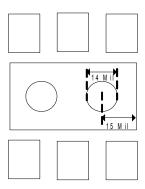


Figure 19: Two through hole open vias embedded in DAP

3. The V_{IN} , V_{OUT} and GND pins will dissipate most of the heat generated during a high load current condition. The layout suggested in Figure 20 provides each pin with adequate copper so that heat may be transferred as efficiently as possible out of the device. The ON pin trace may be laid-out diagonally from the device to maximize the area available to the ground pad. Placing the input and output capacitors as close to the device as possible also contributes to heat dissipation, particularly during high load currents.

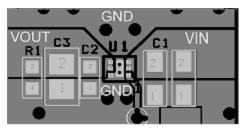


Figure 20: Proper layout of output, input and ground copper area

Demo Board Layout

FPF1015/6/7/8 Demo board has the components and circuitry to demonstrate FPF1015/6/7/8 load switches functions. Thermal performance of the board is improved using a few techniques recommended in the layout recommendations section of datasheet.

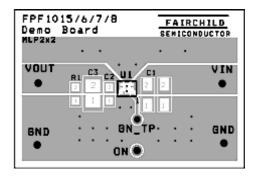
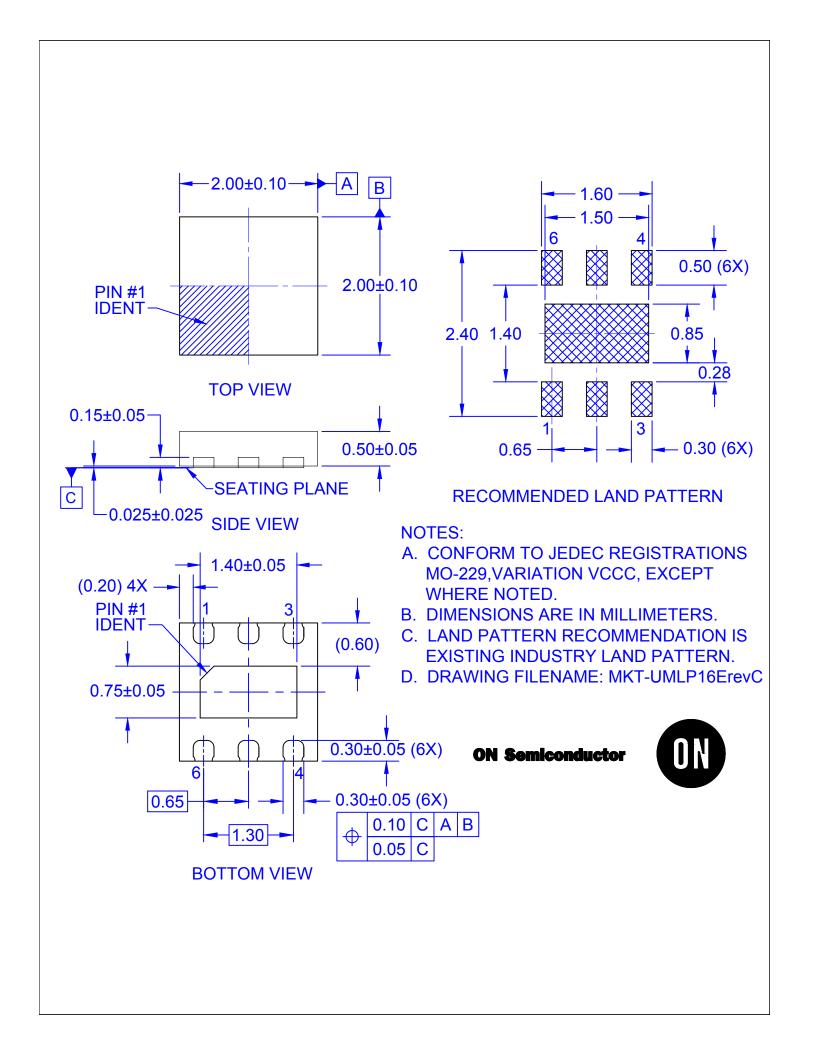



Figure 21. FPF1015/6/7/8 Demo board TOP, SST, ASTOP and DRL layers

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR