IntelliMAX ${ }^{\text {m" }} 3$ A-Capable, Slew-Rate-Controlled Load Switch with True Reverse Current Blocking

 FPF1048

 FPF1048}

Description

The FPF1048 advanced load management switch targets applications requiring a highly integrated solution. It disconnects loads powered from the DC power rail ($<6 \mathrm{~V}$) with stringent off-state current targets and high load capacitances (up to $100 \mu \mathrm{~F}$). The FPF1048 consists of slew-rate controlled lowimpedance MOSFET switch ($23 \mathrm{~m} \Omega$ typical) and integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on power rails.

The FPF1048 has a True Reverse Current Blocking (TRCB) function that obstructs unwanted reverse current from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$ during both ON and OFF states. The exceptionally low off-state current drain ($<1 \mu \mathrm{~A}$ maximum) facilitates compliance with standby power requirements. The input voltage range operates from 1.5 V to $5.5 \mathrm{~V}_{\mathrm{DC}}$ to support a wide range of applications in consumer, optical, medical, storage, portable, and industrial-device power management. Switch control is managed by a logic input (active HIGH) capable of interfacing directly with low-voltage control signal / General-Purpose Input / Output (GPIO) without an external pull-down resistor.

The device is packaged in advanced, fully "green" compliant, $1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}$, Wafer-Level Chip-Scale Package (WLCSP) with backside lamination.

Features

- Input Voltage Operating Range: 1.5 V to 5.5 V
- Typical $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$:
- $21 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
- $23 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$
- $41 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$
- $90 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$
- Slew Rate/Inrush Control with $\mathrm{t}_{\mathrm{R}}: 2.7 \mathrm{~ms}$ (Typ.)
- 3 A Maximum Continuous Current Capability
- Low Off Switch Current: <1 $\mu \mathrm{A}$
- True Reverse Current Blocking (TRCB)
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:
- Human Body Model: $>8 \mathrm{kV}$
- Charged Device Model: $>1.5 \mathrm{kV}$
- IEC 61000-4-2 Air Discharge: $>15 \mathrm{kV}$
- IEC 61000-4-2 Contact Discharge: $>8 \mathrm{kV}$
- This is a $\mathrm{Pb}-$ Free Device

WLCSP6 CASE 567RM

MARKING DIAGRAM

RA\&K
\&.\&2\&Z

```
RA = Device Code
K = 2-Digits Lot Run Traceability Code
&. = Pin One Dot
&2 = 2-Digit Date Code
&Z = Assembly Plant Code
```


ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet.

Applications

- Smart Phones, Tablet PCs
- Storage, DSLR, and Portable Devices

FPF1048

Application Diagram

Figure 1. General Application

Figure 2. Specific Application with $10 \mathrm{M} \Omega$ Pull-Up Resistor at ON Pin

NOTES:

1. Turn-on operation with a $10 \mathrm{M} \Omega$ pull-up resistor at ON pin is acceptable.
2. $\mathrm{V}_{I N}$ should be high enough to generate V_{ON} greater than V_{IH} at the ON pin.
3. NC means no connection.
4. $\mathrm{R}_{\text {IN }}$ and $\mathrm{R}_{\text {OUT }}$ can be added to reduce transient peak voltage. $1 \Omega \sim 10 \Omega$ is recommended.

Functional Block Diagram

Figure 3. Functional Block Diagram

Pin Configurations

(Bottom View)

Figure 4. Pin Assignments

PIN DESCRIPTIONS

Pin \#	Name	
A1, B1	V $_{\text {OUT }}$	Switch Output
A2, B2	$\mathrm{V}_{\text {IN }}$	Supply Input: Input to the Power Switch
C1	GND	Ground
C2	ON	ON/OFF Control, Active High, GPIO Compatible

ABSOLUTE MAXIMUM RATINGS

Symbol			Parameter	Min	Max	Unit
V_{IN}	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {ON }}$ to GND			-0.3	6.0	V
Isw	Maximum Continuous Switch Current			-	3.0	A
P_{D}	Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-	1.2	W
$\mathrm{T}_{\text {STG }}$	Storage Junction Temperature			-65	+150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Temperature Range			-40	+85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance, Junction to Ambient			-	$\begin{gathered} 85 \\ \text { (Note 5) } \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
				-	$\begin{gathered} \hline 110 \\ \text { (Note 6) } \end{gathered}$	
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114		8.0	-	kV
		Charged Device Model, JESD22-C101		1.5	-	
		IEC61000-4-2 System Level	Air Discharge ($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {ON }}, \mathrm{V}_{\text {OUT }}$ to GND)	15.0	-	
			Contact Discharge ($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {ON }}, \mathrm{V}_{\text {OUT }}$ to GND)	8.0	-	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
5. Measured using 2S2P JEDEC std. PCB.
6. Measured using 2S2P JEDEC PCB cold plate method.

RECOMMENDED OPERATING RANGE

Symbol	Parameter	Min	Typ	Max	Unit
V_{IN}	Input Voltage	1.5	-	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	-	+85	${ }^{\circ} \mathrm{C}$
I_{SW}	Continuous Switch Current	-	2.5	3	A

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, typical values are at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit

BASIC OPERATION

$\mathrm{V}_{\text {IN }}$	Input Voltage		1.5	-	5.5	V
$\mathrm{I}_{\mathrm{Q} \text { (OFF) }}$	Off Supply Current	$\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=$ Open	-	-	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD }}$	Shutdown Current	$\mathrm{V}_{\text {ON }}=$ GND, $\mathrm{V}_{\text {OUT }}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	-	0.2	4.0	$\mu \mathrm{A}$
I_{Q}	Quiescent Current	Iout $=0 \mathrm{~mA}$	-	-	11	$\mu \mathrm{A}$
R_{ON}	On-Resistance	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=3 \mathrm{~A}($ (Note 7)	-	22.0	-	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=2 \mathrm{~A}$ (Note 7)	-	21.5	-	
		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	21.0	28.0	
		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=3 \mathrm{~A}($ (Note 7)	-	24.0	-	
		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=2 \mathrm{~A}$ (Note 7)	-	23.5	-	
		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	23.0	30.0	
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	-	26.0	-	
		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	-	30.0	-	
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=250 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	-	41.0	-	
		$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=250 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	-	90.0	110.0	
V_{IH}	ON Input Logic High Voltage	$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to 5.5 V	1.15	-	-	V
V_{IL}	ON Input Logic Low Voltage	$\mathrm{V}_{1 \mathrm{~N}}=1.8 \mathrm{~V}$ to 5.5 V	-	-	0.65	V
		$\mathrm{V}_{1 \mathrm{~N}}=1.5 \mathrm{~V}$ to 1.8 V	-	-	0.60	
Ion	ON Input Leakage	$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND	-	-	1.0	$\mu \mathrm{A}$
RON_PD	$\begin{aligned} & \text { Pull-Down Resistance at ON } \\ & \text { Pin } \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{ON}}=1.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$	6.38	7.65	8.86	$\mathrm{M} \Omega$

TRUE REVERSE CURRENT BLOCKING

$\mathrm{V}_{\text {T_RCB }}$	RCB Protection Trip Point	$V_{\text {OUT }} \mathrm{V}_{\text {IN }}$	-	45	-	mV
$\mathrm{V}_{\text {R_RCB }}$	RCB Protection Release Trip Point	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$	-	25	-	mV
	RCB Hysteresis		-	70	-	mV
ISD_OUT	$V_{\text {OUT }}$ Shutdown Current	$\mathrm{V}_{\text {ON }}=0, \mathrm{~V}_{\text {OUT }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=$ Short to GND	-	-	2	$\mu \mathrm{A}$
$\mathrm{t}_{\text {RCB_ON }}$	RCB Response Time, Device ON	$\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}=100 \mathrm{mV}, \mathrm{V}_{\text {ON }}=\mathrm{HIGH}$	-	4	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {RCB_OFF }}$	RCB Response Time, Device OFF	$\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}=100 \mathrm{mV}, \mathrm{V}_{\text {ON }}=$ LOW	-	2.5	-	$\mu \mathrm{S}$

DYNAMIC CHARACTERISTICS

$\mathrm{t}_{\mathrm{DON}}$	Turn-On Delay (Notes 8, 9)	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	1.7	-	ms
t_{R}	$V_{\text {Out }}$ Rise Time (Notes 8, 9)		-	2.7	-	ms
ton	Turn-On Time (Notes 8, 9)		-	4.4	-	ms
$\mathrm{t}_{\mathrm{DON}}$	Turn-On Delay (Notes 8, 9)	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	1.7	-	ms
t_{R}	$\mathrm{V}_{\text {OUT }}$ Rise Time (Notes 8, 9)		-	1.5	-	ms
t_{ON}	Turn-On Time (Notes 8, 9)		-	3.2	-	ms
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay (Notes 8, 10)	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	1.8	-	ms
t_{F}	$\mathrm{V}_{\text {OUT }}$ Fall Time (Notes 8, 10)		-	34	-	ms
toff	Turn-Off Time (Notes 8, 10)		-	35	-	ms

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
7. This parameter is guaranteed by design and characterization; not production tested.
8. $t_{\text {DON }} / t_{\text {DOFF }} / t_{R} / t_{F}$ are defined in Figure 21.
9. $t_{O N}=t_{R}+t_{D O N}$.
10. $\mathrm{t}_{\text {OFF }}=\mathrm{t}_{\mathrm{F}}+\mathrm{t}_{\text {DOFF }}$

TYPICAL CHARACTERISTICS

Figure 5. Supply Current vs. Temperature

Figure 7. Shutdown Current vs. Temperature

Figure 9. \mathbf{R}_{ON} vs. Temperature

Figure 6. Supply Current vs. Supply Voltage

Figure 8. Shutdown Current vs. Supply Voltage

Figure 10. RoN vs. Supply Voltage

TYPICAL CHARACTERISTICS (continued)

Figure 11. VIL vs. Temperature

Figure 13. V_{IH} vs. Temperature

Figure 15. On Pin Threshold vs. Supply Voltage

Figure 16. t_{R} / t_{F} vs. Temperature

Figure 18. RCB Trip vs. Temperature

Figure 20. RCB Hysteresis vs. Temperature

Figure 17. $\mathrm{t}_{\mathrm{DON}}$ vs. Temperature

Figure 19. RCB Release vs. Temperature

Figure 21. Timing Diagram

TYPICAL CHARACTERISTICS (continued)

Figure 22. Turn-On Response
$\left(\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=5 \Omega\right)$

Figure 24. Turn-Off Response
$\left(\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right)$

Figure 25. RCB Response During Off
$\left(\mathrm{V}_{\text {IN }}=\right.$ Open, $\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F}$, $C_{\text {OUT }}=100 \mu \mathrm{~F}$)

Figure 23. Turn-On Response
$\left(\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right)$

Figure 26. RCB Response During On $\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{ON}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F}\right.$, $C_{\text {OUT }}=100 \mu \mathrm{~F}$)

FPF1048

Operation and Application Description

The FPF1048 is a low- $\mathrm{R}_{\mathrm{ON}} \mathrm{P}$-channel load switch with controlled turn-on and True Reverse Current Blocking (TRCB). The core is a $23 \mathrm{~m} \Omega \mathrm{P}$-channel MOSFET and controller capable of functioning over a wide input operating range of 1.5 V to 5.5 V . The ON pin, an activeHIGH, GPIO/CMOS-compatible input; controls the state of the switch. TRCB functionality blocks unwanted reverse current during both ON and OFF states when higher $\mathrm{V}_{\text {OUT }}$ than V_{IN} is applied.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor; a capacitor must be placed between the $\mathrm{V}_{\text {IN }}$ and GND pins. At least $1 \mu \mathrm{~F}$ ceramic capacitor, C_{IN}, placed close to the pins is usually sufficient. Higher-value $\mathrm{C}_{\text {IN }}$ can be used to reduce the voltage drop in higher-current applications.

Inrush Current

Inrush current occurs when the device is turned on. Inrush current is dependent on output capacitance and slew rate control capability, as expressed by:

$$
\begin{equation*}
\mathrm{I}_{\text {INRUSH }}=\mathrm{C}_{\text {OUT }} \times \frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {INITIAL }}}{\mathrm{t}_{\mathrm{R}}}+\mathrm{I}_{\text {LOAD }} \tag{eq.1}
\end{equation*}
$$

Where:

COUT	Ouput capacitance;
tR	Slew rate or rise time at $V_{\text {OUT }} ;$
$\mathrm{V}_{\text {IN }}$	Input voltage;
$\mathrm{V}_{\text {INITIAL }}$	Initial voltage at COUT, usually GND; and
$\mathrm{I}_{\text {LOAD }}$	Load current.

Higher inrush current causes higher input voltage drop, depending on the distributed input resistance and input capacitance. High inrush current can cause problems.

FPF1048 has a 2.7 ms of slew rate capability under $4.5 \mathrm{~V}_{\text {IN }}$ at $1000 \mu \mathrm{~F}$ of COUT and 5Ω of RL so inrush current can be minimized and no input voltage drop appears. Table 1 and Figure 27 show the values and actual waveforms with $\mathrm{C}_{\text {IN }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}$, and no load current.

Table 1. INRUSH CURRENT BY INPUT VOLTAGE

$\mathbf{V}_{\mathbf{I N}}[\mathrm{V}]$		Inrush Current [mA]	
	$\mathbf{t}_{\mathbf{R}}[\mathrm{ms}]$	Measured	Calculated with 2.7 ms $\mathbf{t}_{\mathbf{R}}$
1.5	1.62	76	56
3.3	2.03	140	122
5.0	2.33	196	185

Figure 27. Inrush Current Waveform, Under $5 \mathrm{~V}_{\mathrm{IN}}$, $C_{\text {OUT }}=100 \mu \mathrm{~F}$, no Load

Output Capacitor

At least $0.1 \mu \mathrm{~F}$ capacitor, COUT, should be placed between the $\mathrm{V}_{\text {OUT }}$ and GND pins. This capacitor prevents parasitic board inductance from forcing $\mathrm{V}_{\text {OUT }}$ below GND when the switch is on.

True Reverse Current Blocking

The true reverse current blocking feature protects the input source against current flow from output to input regardless of whether the load switch is on or off.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance on normal and short-circuit operation. Using wide traces or large copper planes for all pins ($\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}, \mathrm{ON}$, and GND) minimizes the parasitic electrical effects and the case-to-ambient thermal impedance.

FPF1048

ORDERING INFORMATION
\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { Part Number } & \begin{array}{c}\text { Top } \\
\text { Mark }\end{array} & \begin{array}{c}\text { Switch R } \\
\text { (Typical) at } 4.5 \mathbf{V}_{\mathbf{I N}}\end{array} & \begin{array}{c}\text { Input } \\
\text { Buffer }\end{array} & \begin{array}{c}\text { Output } \\
\text { Discharge }\end{array} & \begin{array}{c}\text { ON Pin } \\
\text { Activity }\end{array} & \mathbf{t}_{\mathbf{R}} & \text { Package } \\
\hline \text { FPF1048BUCX } & \text { RA } & 23 \mathrm{~m} \Omega & \text { CMOS } & \text { NA } & \text { Active HIGH } & 2.7 \mathrm{~ms} & \begin{array}{c}\text { 6-Ball, WLCSP with } \\
\text { Backside Laminate, } \\
2 \times 3 \text { Array, }\end{array}
$$

0.5 mm Pitch,

300 \mu \mathrm{~m} Balls\end{array}\right]\)| |
| :--- |

PRODUCT-SPECIFIC DIMENSIONS

Product	D	E	X	Y
FPF1048BUCX	$1460 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$960 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$230 \mu \mathrm{~m}$	$230 \mu \mathrm{~m}$

WLCSP6 1.46x0.96x0.582
 CASE 567RM
 ISSUE O

DATE 30 NOV 2016

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

| DOCUMENT NUMBER: | 98AON16579G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP6 1.46x0.96x0.582 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR

