

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FPF1103／FPF1104
 Advance Load Management Switch

Features

－ 1.2 V to 4 V Input Voltage Operating Range
－Typical $\mathrm{R}_{\mathrm{ds}(\mathrm{on}) \text { ：}}$
－ $35 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathbb{I N}}=3.3 \mathrm{~V}$
－ $55 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$
－ $85 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$
－Slew Rate Control with $t_{\mathrm{R}}: 65 \mu \mathrm{~s}$
－Output Discharge Function on FPF1104
－Low $<1 \mu \mathrm{~A}$ Quiescent Current at $\mathrm{V}_{\mathrm{ON}}=\mathrm{V}_{\text {IN }}$
－ESD Protected：Above 4000V HBM，2000V CDM
－GPIO／CMOS－Compatible Enable Circuitry

Applications

－Mobile Devices and Smart Phones
－Portable Media Devices
－Digital Cameras
－Advanced Notebook，UMPC，MID
－Portable Medical Devices
－GPS and Navigation Equipment

Description

The FPF1103／04 are low RDS P－channel MOSFET load switches of the IntelliMAX ${ }^{\text {TM }}$ family．Integrated slew－rate control prevents inrush current from glitch supply rails with capacitive loads common in power applications．

The input voltage range operates from 1.2 V to 4 V to fulfill today＇s lowest ultra－portable device supply requirements．Switch control is by a logic input（ON－pin） capable of interfacing directly with low－voltage CMOS control signals and GPIOs in embedded processors．

Ordering Information

Part Number	Part Marking	Switch （Typical） At 1．8V	Input Buffer	Output Discharge	ON Pin Activity	$\mathbf{t}_{\boldsymbol{R}}$	Eco Status	Package

[^1]
Application Diagram

Figure 1. Typical Application

Notes:

1. $\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 0603$, for example Murata GRM185R60J105KE26
2. Cout $=1 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 0805$, for example Murata GRM216R61A105KA01

Block Diagram

Figure 2. Block Diagram (Output Discharge for FPF1104 Only)

Pin Configurations

Pin 1 Indicator

Figure 3. $1 \times 1 \mathrm{~mm}$ WLCSP Bumps Facing Down

Figure 5. Pin Assignments (Top View)

Figure 4. $1 \times 1 \mathrm{~mm}$ WLCSP Bumps Facing Up

Figure 6. Pin Assignments (Bottom View)

Pin Definitions

Pin \#	Name	Description
A1	$V_{\text {out }}$	Switch Output
A2	$V_{\text {IN }}$	Supply Input: Input to the Power Switch
B1	GND	Ground
B2	ON	ON/OFF Control, Active High

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT, }} \mathrm{V}_{\text {ON }}$ to GND		-0.3	4.2	V
Isw	Maximum Continuous Switch Current			1.2	A
PD	Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.0	W
$\mathrm{T}_{\text {STG }}$	Storage Junction Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
$\Theta_{J A}$	Thermal Resistance, Junction-to-Ambient	1S2P with 1 Thermal Via		95	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		1S2P without Thermal Via		187	
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	4		kV
		Charged Device Model, JESD22-C101	2		

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{IN}	Supply Voltage	1.2	4.0	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathbb{I N}}=1.2$ to $4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{\mathbb{I N}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units		
Basic Operation								1.2

Dynamic Characteristics

$\mathrm{t}_{\text {DON }}$	Turn-On Delay ${ }^{(4)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	35		$\mu \mathrm{s}$
t_{R}	$V_{\text {Out }}$ Rise Time ${ }^{(4)}$		65		$\mu \mathrm{s}$
ton	Turn-On Time ${ }^{(4,6)}$		100		$\mu \mathrm{s}$
toon	Turn-On Delay ${ }^{(4)}$	$\begin{aligned} & V_{I N}=3.3 \mathrm{~V}, R_{L}=500 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	30	50	$\mu \mathrm{s}$
t_{R}	Vout Rise Time ${ }^{(4)}$		40	55	$\mu \mathrm{s}$
ton	Turn-On Time ${ }^{(4,6)}$		70	105	$\mu \mathrm{s}$

FPF1103

$t_{\text {DOFF }}$	Turn-Off Delay ${ }^{(4)}$	$\begin{aligned} & V_{I N}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	2.0	2.5	$\mu \mathrm{s}$
t_{F}	Vout Fall Time ${ }^{(4)}$		2.2		$\mu \mathrm{s}$
toff	Turn-Off ${ }^{(4,7)}$		4.2		$\mu \mathrm{s}$
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay ${ }^{(4)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	7.0		$\mu \mathrm{s}$
t_{F}	$V_{\text {out }}$ Fall Time ${ }^{(4)}$		110		$\mu \mathrm{s}$
toff	Turn-Off ${ }^{(4,7)}$		117		$\mu \mathrm{s}$

FPF1104 ${ }^{(5)}$

$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay ${ }^{(4)}$	$\begin{aligned} & V_{I N}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{R}_{\mathrm{PD}}=65 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	2.0	2.5	$\mu \mathrm{s}$
t_{F}	$V_{\text {Out }}$ Fall Time ${ }^{(4)}$		1.9		$\mu \mathrm{s}$
toff	Turn-Off ${ }^{(4,7)}$		3.9		$\mu \mathrm{s}$
tooff	Turn-Off Delay ${ }^{(4)}$	$\begin{aligned} & V_{I N}=3.3 V, R_{L}=500 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \\ & R_{P D}=65 \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	2.5		$\mu \mathrm{s}$
t_{F}	Vout Fall Time ${ }^{(4)}$		10.6		$\mu \mathrm{s}$
toff	Turn-Off ${ }^{(4,7)}$		13.1		$\mu \mathrm{s}$

Notes:

3. This parameter is guaranteed by design and characterization; not production tested.
4. $t_{\text {DON }} / t_{\text {DOFF }} / t_{R} / t_{F}$ are defined in Figure 7.
5. Output discharge path is enabled during off.
6. $t_{\mathrm{ON}}=\mathrm{t}_{\mathrm{R}}+\mathrm{t}_{\mathrm{DON}}$.

Notes:

7. $\mathrm{t}_{\mathrm{OFF}}=\mathrm{t}_{\mathrm{F}}+\mathrm{t}_{\text {DOFF }}$.
Figure 7. Timing Diagram

Typical Performance Characteristics

Figure 8. Shutdown Current vs. Temperature

Figure 10.Off Supply Current vs. Temperature (FPF1103, $\mathrm{V}_{\text {OUT }}$ is floating)

Figure 12.Quiescent Current vs. Temperature ($\mathrm{V}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{IN}}$)

Figure 9. Shutdown Current vs. Supply Voltage

Figure 11.Off Supply Current vs. Supply Voltage (FPF1103, V ${ }_{\text {OUT }}$ is Floating)

Figure 13.Quiescent Current vs. Supply Voltage

Typical Performance Characteristics

Figure 14.Quiescent Current vs. Temperature ($\mathrm{V}_{\text {on }}=0.75 \times \mathrm{V}_{\text {IN }}$)

Figure 16.Ron vs. Temperature

Figure 18.ON-Pin Threshold vs. V_{IN}

Figure 15. Quiescent Current vs. Supply Voltage at $\mathrm{V}_{\mathrm{ON}}=1.2 \mathrm{~V}$

Figure 17.Ron vs. Supply Voltage

Typical Performance Characteristics

Figure 19. Vout Rise and Fall Time vs. Temperature at $R_{L}=10 \Omega$

Figure 21.V ${ }_{\text {оut }}$ Rise and Fall Time vs. Temperature at $\mathrm{R}_{\mathrm{L}}=500 \Omega$

Figure 23. $\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\text {DoN }}$ vs. Output Load at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$

Figure 20.V ${ }_{\text {out }}$ Turn-On and Turn-Off Delay vs. Temperature at $\mathrm{R}_{\mathrm{L}}=10 \Omega$

Figure 22. V $_{\text {out }}$ Turn-On and Turn-Off Delay vs. Temperature at $\mathrm{R}_{\mathrm{L}}=500 \Omega$

Typical Performance Characteristics

Figure 24.Turn-On Response
$\left(V_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {oUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

Figure 26.Turn-On Response
$\left(\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=500 \Omega\right)$

Figure 25.Turn-Off Response $\left(V_{I N}=3.3 V, C_{I N}=1 \mu F, C_{\text {OUT }}=0.1 \mu F, R_{L}=10 \Omega\right)$

Figure 27.Turn-Off Response
$\left(\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=500 \Omega\right)$

Application Information

Input Capacitor

An IntelliMAX ${ }^{\text {TM }}$ switch doesn't require an input capacitor. To reduce device inrush current effect, a $0.1 \mu \mathrm{~F}$ ceramic capacitor, C_{IN}, is recommended close to the VIN pin. A higher value of $\mathrm{C}_{\mathbb{I}}$ can be used to further reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor

An IntelliMAX ${ }^{\text {TM }}$ switch works without an output capacitor. However, if parasitic board inductance forces Vout below GND when switching off, a $0.1 \mu \mathrm{~F}$ capacitor, Cout, should be placed between Vout and GND.

Fall Time

Device output fall time can be calculated based on RC constant of the external components as follows:
$t_{F}=R_{L} \times C_{L} \times 2.2$
where t_{F} is 90% to 10% fall time, R_{L} is output load, and C_{L} is output capacitor.

The same equation works for a device with a pull-down output resistor. R_{L} is replaced by a parallel connected pull-down and an external output resistor combination, as follows:
$t_{F}=\frac{R_{L} \times R_{P D}}{R_{L}+R_{P D}} \times C_{L} \times 2.2$
where t_{F} is 90% to 10% fall time, R_{L} is output load, $R_{P D}=65 \Omega$.is output pull-down resistor, and C_{L} is the output capacitor.

Resistive Output Load

If resistive output load is missing, the IntelliMAX ${ }^{\text {TM }}$ switch without a pull-down output resistor is not discharging the output voltage. Output voltage drop depends, in that case, mainly on external device leaks.

Recommended Land Pattern and Layout

For best thermal performance and minimal inductance and parasitic effects, it is recommended to keep input and output traces short and capacitors
as close to the device as possible. Below is a recommended layout for this device to achieve optimum performance.

Figure 28.Recommended Land Pattern and Layout

Physical Dimensions

Figure 29.4 Ball, $1.0 \times$ 1.0mm Wafer-Level Chip-Scale Packaging (WLCSP)

Product-Specific Dimensions

Product	D	E	\mathbf{X}	\mathbf{Y}
FPF1103	$960 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$960 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	0.230 mm	0.230 mm
FPF1104	$960 \mathrm{um} \pm 30 \mu \mathrm{~m}$	$960 \mathrm{um} \pm 30 \mu \mathrm{~m}$	0.230 mm	0.230 mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

AccuPowertm	FlashWriter ${ }^{\text {®* }}$	Power-SPM ${ }^{\text {™ }}$	E SYSTEM ${ }^{\text {®* }}$
Auto-SPM ${ }^{\text {TM }}$	FPS ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	GGENERAL
Build it Now ${ }^{\text {TM }}$	F-PFS ${ }^{\text {™ }}$	Power S $^{\text {TM }}$	The Power Franchise
CorePLUS ${ }^{\text {Tm }}$	FRFET ${ }^{\text {® }}$	Programmable Active Droop ${ }^{\text {™ }}$	0 wer
CorePOWERTM	Global Power Resource ${ }^{\text {SM }}$	QFET ${ }^{\text {® }}$	franchiss
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$
CTL ${ }^{\text {m }}$	Green FPS ${ }^{\text {™ }} \mathrm{e}$-Series ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {m }}$
Current Transfer Logic ${ }^{\text {TM }}$	Gmax ${ }^{\text {Tm }}$	RapidConfigure ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {mm }}$
Ecospark ${ }^{\text {® }}$	GTOm	-)	TinyLogic ${ }^{\text {® }}$
EfficientMax ${ }^{\text {TM }}$	IntelliMAX'm		TINYOPTOTM
EZSWITCH ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{mWW} / \mathrm{KW}$ at a time ${ }^{\text {TM }}$	TinyPowertm
E7 ${ }^{\text {m* }}$	MegaBuck ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$ SmartMax ${ }^{\text {TM }}$	TinyPMM ${ }^{\text {tm }}$
	MICROCOUPLER ${ }^{\text {TM }}$		Tiny Mire ${ }^{\text {™ }}$
	MicroFETM	$\begin{aligned} & \text { SMAR } \\ & \text { SPM } \end{aligned}$	TriFault Detect ${ }^{\text {TM }}$
	MicroPak ${ }^{\text {Tm }}$	STEALTH ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {Tm* }}$
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {™ }}$	μ SerDes ${ }^{\text {™ }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperSOTTM-3	M
FACT Quiet Series ${ }^{\text {TM }}$	Motion-SPM ${ }^{\text {m/M }}$	SuperSOTM-6	SerDes
$\mathrm{FACT}^{\text {- }}$	OPTOLOGIC ${ }^{\circ}$	SuperSOT ${ }^{\text {Tm-8 }}$	UHC ${ }^{\text {® }}$
FAST ${ }^{\text {* }}$	OPTOPLANAR	SupreMOS ${ }^{\text {TM }}$	Ultra FRFET ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$		SyncFET ${ }^{\text {Tm }}$	UniFETTM
FETBench ${ }^{\text {TM }}$		Sync-Lock ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$
	PDP SPM ${ }^{\text {TM }}$		VisualMax'm $X S^{T M}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TOIMPROVE RELIABIUTY,FUNCTION, ORDESIGN. FAIRCHILDDOES NOT ASSUME ANY LIABILITY ARIIING OUT OF THEAPPUCATION OR USE OF ANY PRODUCTOR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDERITS PATENTRIGHTS, NOR THERIGHTS OF OTHERS. THESE SPEGFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHID'S WORLDMDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILDSEMICONDUCTOR CORPORATION.

As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Coporation's Anti-Counterfeiting Policy. Fairchild's Ant-Counterfeiting Policy is also stated on our extemal website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semicondudtor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performanoe, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly fromFairchild or from Authorized Fairchild Distributors who are listed by oountry on our neb page ated above. Products customers buy either from Fairchild diredly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide ary warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and enouurage our customers to do their part in stopping this practioe by buying direct or from authorized distributors.
PRODUCT STA TUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG AP22953CW12-7 MAX14919AUP+T MAX14919ATP+ KTS1697AEOAB-TR TCK207AN,LF BD2227G-LBTR TCK126BG,LF XC8111AAA010R-G MPQ5072GG-AEC1-P TCK128BG,LF XC8110AA018R-G XC8110AA010R-G XC8111AA018R-G MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

[^1]: For Fairchild＇s definition of Eco Status，please visit：http：／／www．fairchildsemi．com／company／green／rohs green．html．

