Surge and Over-Voltage Protection Switch for VBUS
 FPF2280

Description

The FPF2280 features a low- R_{ON} internal FET and an operating range of $2.5 \mathrm{~V}_{\mathrm{DC}}$ to $5.5 \mathrm{~V}_{\mathrm{DC}}$ (absolute maximum of $29 \mathrm{~V}_{\mathrm{DC}}$). An internal clamp is capable of shunting surge voltages $>100 \mathrm{~V}$, protecting downstream components and enhancing system robustness. The FPF2280 features over-voltage protection that powers down the internal FET if the input voltage exceeds the OVP threshold. The OVP threshold is adjustable with optional external resistors. Over-temperature protection also powers down the device at $130^{\circ} \mathrm{C}$ (typical). Exceptionally low off-state current ($<1 \mu \mathrm{~A}$ maximum) facilitates compliance with standby power requirements.

The FPF2280 is available in a fully "green" compliant $1.3 \mathrm{~mm} \times$ 1.8 mm Wafer-Level Chip-Scale Package (WLCSP) with backside laminate.

Features

- Surge Protection
- IEC 61000-4-5: > 100 V
- Over-Voltage Protection (OVP)
- Over-Temperature Protection (OTP)
- ESD Protection
- Human Body Model (HBM): > 3.5 kV
- Charged Device Model (CDM): > 2 kV
- IEC 61000-4-2 Air Discharge: > 15 kV
- IEC 61000-4-2 Contact Discharge: > 8 kV
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Mobile Handsets and Tablets
- Portable Media Players
- MP3 Players

WLCSP12 1.288×1.828×0.586 CASE 567QX

MARKING DIAGRAM

HC	$=$ Specific Device Code
ZZ	$=$ Assembly Lot Code
Y	$=$ Year
W	$=$ Work Week
A	$=$ Assembly Location

ORDERING INFORMATION

Part Number	Top Marking	Operating Temperature Range	Package	Shipping †
FPF2280BUCX-F130	HC	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	WLCSP12 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

FPF2280

Block Diagram

Figure 1. Functional Block Diagram

Pin Configuration

Figure 2. Pin Configuration

PIN DEFINITIONS

Name	Bump	Type		Description	
IN	B3, C2, C3	Input/Supply	Switch Input and Device Supply		
OUT	A2, A3, B2	Output	Switch Output to Load	1	VIN < VIN_min or VIN \geq VovLO
\#ACOK	B1	Output (Open Drain)	Power Good	Voltage Stable	
\#EN	A1	Input	Device Enable (Active LOW)		
OVLO	C1	Input	Over-Voltage Lockout Adjustment Pin		
GND	A4, B4, C4	Supply	Device Ground		

Over-Voltage Lockout (OVLO) Calculation

OVLO can be set externally and override default OVP. By connecting an external resistor-driver to the OVLO pin. Equation (1) can produce the desired trip voltage and resistor values.

$$
\begin{equation*}
\mathrm{V}_{\text {IN_OVLO }}=\mathrm{V}_{\text {OVLO_TH }} \times[1+\mathrm{R} 1 / R 2] \tag{eq.1}
\end{equation*}
$$

Recommended minimum R1 $=1 \mathrm{M} \Omega$

On-The-Go (OTG) Functionality

During OTG operation, the FPF2280 is initially disabled and the power FET's bulk diode is forward biased. The bulk
diode represents $\sim 0.7 \mathrm{~V}$ drop across the device, which remains until the V_IN voltage increases past 2.5 V , when the device is fully enabled. While the device is disabled and the body diode is forward biased, the max DC current through the diode is 1.8 A . This current is limited by the thermal performance of the device $(0.7 \mathrm{~V} \times 1.8 \mathrm{~A}=1.36 \mathrm{~W})$. This current should be transient; the \#EN pin must be pulled LOW to ensure the device fully enables. The transient should not exceed the RC time constant of the C_IN and C_OUT capacitors. At the system level, over-voltage and current protection should be provided outside the FPF2280.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	V_IN to GND \& V_IN to V_OUT = GND or Float		-0.3	29.0	V
$\mathrm{V}_{\text {OUT }}$	V_OUT to GND		-0.3	$\mathrm{V}_{\mathrm{IN}}+0.3$	V
$\mathrm{V}_{\text {OVLO }}$	OVLO to GND		-0.3	24.0	V
$\mathrm{V}_{\text {\#EN_ACOK }}$	Maximum DC Voltage Allowed on \#EN or ACOK Pin			6	V
1 N	Switch I/O Current (Continuous)			4.5	A
$t_{\text {PD }}$	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.48	W
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 Seconds)			260	${ }^{\circ} \mathrm{C}$
ӨJA	Thermal Resistance, Junction-to-Ambient ${ }^{(1)}$ (1-in. ${ }^{2}$ Pad of 2-oz. Copper)			84.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	IEC 61000-4-2 System ESD	Air Gap	15.0		kV
		Contact	8.0		
	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	All Pins	3.5		
	Charged Device Model, JESD22-C101	All Pins	2.0		
Surge	IEC 61000-4-5, Surge Protection	$\mathrm{V}_{\text {IN }}$	100		V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured using 2S2P JEDEC std. PCB

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\mathbb{I}}$	Supply Voltage	2.5	20.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	105	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ unless otherwise indicated. Typical values are $\mathrm{V}_{\mathbb{I N}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathbb{N}} \leq 3 \mathrm{~A}, \mathrm{C}_{I N}=0.1 \mu \mathrm{~F}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
VIN_CLAMP	Input Clamping Voltage	$\mathrm{I}_{\mathrm{N}}=10 \mathrm{~mA}$		35		V
I_{Q}	Input Quiescent Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, \#EN $=0 \mathrm{~V}$		58	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{N}, \mathrm{Q}}$	OVLO Supply Current	$\mathrm{V}_{\text {OVLO }}=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		63	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IN_OVLO }}$	Internal Over-Voltage Trip Level	$\mathrm{V}_{\text {IN }}$ Rising, OVLO = GND	6.6	6.8	7.0	V
		$\mathrm{V}_{\text {IN }}$ Falling	6.2			V
VovLo_TH	OVLO Set Threshold	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $\mathrm{V}_{\text {OVLO }}$	1.12	1.20	1.24	V
VovLo_RNG	Adjustable OVLO Threshold Range	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $\mathrm{V}_{\text {OVLO }}$	4		20	V
VovLo_select	External OVLO Select Threshold			0.30	0.28	V
R_{ON}	Resistance from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	39	$\mathrm{m} \Omega$
Cout	OUT Load Capacitance ${ }^{(2)}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$			1000	$\mu \mathrm{F}$
lolvo	OVLO Input Leakage Current	VovLO = VovLo_TH	-100		100	nA
$\mathrm{T}_{\text {SDN }}$	Thermal Shutdown ${ }^{(2)}$			130		${ }^{\circ} \mathrm{C}$
T ${ }_{\text {SDN_HYS }}$	Thermal Shutdown Hysteresis ${ }^{(2)}$			20		${ }^{\circ} \mathrm{C}$

Digital Signals

V OL	\#ACOK Output Low Voltage	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=3.3 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$		0.4	V
VIH_\#EN	Enable HIGH Voltage	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $\mathrm{V}_{\text {OVLO }}$	1.2		V
VIL_\#EN	Enable LOW Voltage	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $\mathrm{V}_{\text {OVLO }}$		0.5	V
IACOK_LEAK	\#ACOK Leakage Current	$\mathrm{V}_{1 / \mathrm{O}}=3.3 \mathrm{~V}$, \#ACOK Deasserted, \#EN $=0 \mathrm{~V}$	-0.5	0.5	$\mu \mathrm{A}$
\#EN_Leak	\#EN Leakage Current	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ Float	-1.0	1.0	$\mu \mathrm{A}$

Timing Characteristics

$t_{\text {DEB }}$	Debounce Time	Time from 2.5 $\mathrm{V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IN_ovLO }}$ to $\mathrm{V}_{\text {OUT }}=$ $0.1 \times \mathrm{V}_{\mathrm{IN}}$	15	ms
${ }_{\text {tstart }}$	Soft-Start Time	Time from $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN} \text { min }}$ to $0.2 \times$ \#ACOK, $\mathrm{V}_{\text {IO }}=1.8 \mathrm{~V}$ with $10 \mathrm{k} \Omega$ Pull-up Resistor	30	ms
ton	Switch Turn-On Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {OUT }}$ from $0.1 \times \mathrm{V}_{\text {IN }}$ to $0.9 \times \mathrm{V}_{\text {IN }}, \mathrm{C}_{\text {LOAD }}=100 \mu \mathrm{~F}$	2	ms
toff	Switch Turn-Off Time ${ }^{(2)}$	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=0 \mu \mathrm{~F}, \mathrm{~V}_{\text {IN }}>\mathrm{V}_{\text {OVLO }} \text { to } \\ & \mathrm{V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }} \end{aligned}$	125	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Guaranteed by characterization and design.

FPF2280

Timing Diagrams

Figure 3. Timing for Power Up and Normal Operation

Figure 4. Timing for OVLO Trip

PRODUCT-SPECIFIC PACKAGE DIMENSIONS

\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
$1288 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$1828 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$314 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$	$244 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$

WLCSP12 1.288x1.828x0.586

CASE 567QX
ISSUE O
DATE 31 OCT 2016

SIDE VIEWS

BOTTOM VIEW

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.

PACKAGE NOMINAL HEIGHT IS 586 MICRONS ± 39 MICRONS (547-625 MICRONS).
F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.

| DOCUMENT NUMBER: | 98AON13356G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP12 1.288x1.828x0.586 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC25051YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR VNV35N07-E

