FPF2283CUCX

28 V / 7 A Rated OVP with Ultra Low On-resistance Switch and Moisture Detection

Description

FPF2283C is a super OVP with ultra low on-resistance single channel switch controlled by external logic pin or $\mathrm{I}^{2} \mathrm{C}$ interface. The device contains an N-MOSFET that can operate over an input voltage range of 2.8 V to 28 V and can support a maximum continuous current of 10 A .

When the input voltage exceeds the over-voltage threshold, the internal FET is turned off immediately to prevent damage to the protected downstream components. When in detection mode, the internal current source and ADC can be used to calculate the resistance on VIN for moisture detection.

FPF2283CUCX is available in a small 20 bumps WLCSP package and operate over the free-air temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Over-voltage Protection Up to +28 V
- Internal Low $\mathrm{R}_{\mathrm{DS}(\text { on) }}$ NMOS Transistors: Typical $7.5 \mathrm{~m} \Omega$
- Programmable Over-voltage Lockout (OVLO)
- Externally Adjustable via ADJ Pin
- Programmable via I ${ }^{2}$ C Interface
- Active-low Enable Pin for Device
- Super Fast OVLO Response Time: Typical 50 ns
- $I^{2} \mathrm{C}$ Communication with System
- 8-bits ADC for Moisture Detection on VIN
- Short Circuit Protection and Auto-restart
- Over Temperature Protection (Thermal Shutdown)
- +40 V Surge Capability Base on IEC61000-4-5
- System Level ESD Base on IEC61000-4-2
- 8 kV Contact Discharge
- 15 kV Air Gap Discharge
- Robust ESD Performance
- 3.5 kV Human Body Model (HBM)
- 1 kV Charged Device Model (CDM)

Typical Applications

- Mobile Phones
- PDAs
- GPS

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

WLCSP20
CU SUFFIX
CASE 567UT

MARKING DIAGRAM

0
$3 H K K$ $X Y Z$

$3 H$	$=$ Specific Device Code
KK	$=2$-digit Lot Run Code
XY	$=2$-digit Date Code
Z	$=1$-digit Plant Code

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Package	Shipping †
FPF2283CUCX	WLCSP20	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

FPF2283CUCX

Figure 1. Application Schematic - Adjustable Option

Figure 2. Simplified Block Diagram

Table 1. PIN FUNCTION DESCRIPTION

Pin \#	Name	
B3, B4, B5, C3, C4, C5	IN	Description
A3, A4, A5, D3, D4, D5	OUT	Power Output: Switch Output to Load
B1	INTB	Interrupt: Open-drain output. Pull down to ground when any FLAG register alarms.
A1	ENB	Enable Input: Active LOW.
A2	ADJ	OVLO Input: Over Voltage Lockout Adjustment Input
C1	VDD	Power supply: Supply for ADC and I2C communication during communication
D1	SCL	Serial Clock Input: Be used to synchronize data movement on the I2C serial interface
D2	SDA	Serial Data Input/Output: Input / Output pin for the 2-wire serial interface. Open-drain output and requires an external pull-up resistor.
B2, C2	GND	Ground

Table 2. MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage Range (Note 1)	$\mathrm{V}_{\text {in }}$	-0.3 to 28	V
Output Voltage Range	$\mathrm{V}_{\text {out }}$	-0.3 to $\left(\mathrm{V}_{\text {in }}+0.3\right)$	V
I/O pin voltage Range	ENB, INTB, SCL, SDA	-0.3 to 6	V
VDD Voltage Range	V_{DD}	-0.3 to 6	V
Adjustable Input Range	ADJ	-0.3 to 28	V
Internal FET continuous current	IOUT	0 to 10	A
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J} \text { (max) }}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	TSTG	-65 to 150	${ }^{\circ} \mathrm{C}$
ESD Capability, Human Body Model (Note 2)	ESDHBM	3.5	kV
ESD Capability, Charge Device Model (Note 2)	ESDCDM	1	
IEC 61000-4-2 SYSTEM Level ESD	Contact	8	
	Air Gap	15	
Lead Temperature Soldering Reflow (SMD Styles Only), Pb-Free Versions (Note 3)	$\mathrm{T}_{\text {SLD }}$	260	${ }^{\circ} \mathrm{C}$
Moisture Sensitivity	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.
2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114) ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115) Latch-up Current Maximum Rating: $\leq 150 \mathrm{~mA}$ per JEDEC standard: JESD78
3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

Table 3. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, WLCSP-20 (Note 4) Thermal Resistance, Junction-to-Air (Note 5)	R $_{\text {日JA }}$	36.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

4. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.
5. Values based on 2S2P JEDEC std. PCB.

Table 4. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Supply Voltage on VIN	$\mathrm{V}_{\text {in }}$	2.8	23	V
Supply Voltage on VDD	V_{DD}	3.0	5.5	V
$\mathrm{I}^{2} \mathrm{C}$ interface	SDA, SCL	1.5	5.5	V
I/O pins	ADJ, INTB, ENB	0	5.5	V
Output Current	$\mathrm{I}_{\text {out }}$	0	7	A
VIN Capacitor	$\mathrm{C}_{\text {in }}$	0.1		$\mu \mathrm{~F}$
VOUT Capacitor	$\mathrm{C}_{\text {out }}$	0.1		$\mu \mathrm{~F}$
Ambient Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS $V_{\text {in }}=2.5$ to $23 \mathrm{~V}, \mathrm{C}_{\text {in }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$; For typical values $\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {in }} \leq 3 \mathrm{~A}, \mathrm{C}_{\text {in }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; unless otherwise noted. (Note 6)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
LEAKAGE AND QUIESCENT CURRENTS						
Input Quiescent Current on VIN	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{ENB}=0 \mathrm{~V}, 0 \times 01=8 \mathrm{~h} 00$	I_{Q}		100		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}, \mathrm{ENB}=0 \mathrm{~V}, 0 \times 01=8 \mathrm{~h} 00$			150		
Input Quiescent Current on VDD	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, ENB $=0 \mathrm{~V}$, $0 \times 01=8 \mathrm{hC0}$, $0 \times 06=8 \mathrm{~h} 00,0 \times 07=8$ 'h00 (detection mode, 0 A , single pulse)				100	
	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{ENB}=0 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}, \\ & 0 \times 01=8 \text { hoo (charging mode) } \end{aligned}$				30	
VDD Current consumption of ADC	$\begin{aligned} & \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{ENB}=0 \mathrm{~V}, 0 \times 01=8^{\prime} \mathrm{hC0}, \\ & 0 \times 06=8^{\prime} \mathrm{ho0}, 0 \times 07=8 \mathrm{hFO} \end{aligned}$	$\mathrm{I}_{\text {ADC }}$			1	mA
Device shutdown current	$\mathrm{VIN}=5 \mathrm{~V}, \mathrm{ENB}=3.3 \mathrm{~V}, \mathrm{VOUT}=0 \mathrm{~V}$	$I_{\text {SHDN }}$		5	10	$\mu \mathrm{A}$
ADJ Input Leakage Current	$\mathrm{V}_{\text {ADJ }}=\mathrm{V}_{\text {OVLO_TH }}$	$\mathrm{I}_{\text {ADJ }}$	-100		100	nA
INTB and SDA Output leakage	$\mathrm{V}_{\text {PULL_ }}$ UP $=3 \mathrm{~V}$, Interrupt De-asserted	ILEAK			0.5	$\mu \mathrm{A}$

OVER VOLTAGE AND UNDER VOLTAGE LOCKOUT

Under-Voltage Rising Trip Level for VIN	$\mathrm{V}_{\text {IN }}$ rising, $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN_UV_R }}$	2.47	2.6	2.8	V
Under-Voltage Falling Trip Level for VIN	$\mathrm{V}_{\text {IN }}$ falling, $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN_UV_F }}$		2.5		V
Under-Voltage Falling Trip Level for VDD	V_{DD} falling, $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {DD_UV_F }}$	2.6	2.8	3.0	V
UVLO Hysteresis for VDD		$\mathrm{V}_{\text {HYS_VDD }}$		100		mV
Default Over-Voltage Trip Level	$\mathrm{V}_{\text {IN }}$ rising, $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, refer to register table for other value set by $\mathrm{I}^{2} \mathrm{C}$	$\mathrm{V}_{\text {IN_OVLO }}$	6.6	6.8	7.0	V
OVLO set threshold	$\mathrm{V}_{\text {ADJ }}=1.1 \mathrm{~V}$ to 1.3 V , the voltage of ADJ to trigger OVLO	$\mathrm{V}_{\text {OVLO_TH }}$	1.18	1.204	1.22	V
OVLO threshold hysteresis		$\mathrm{V}_{\text {HYS_OVLO }}$		2		$\%$
Adjustable OVLO range	OV_MODE $=0, \mathrm{~V}_{\text {ADJ }}>0.5 \mathrm{~V}$	$\mathrm{~V}_{\text {OV_RNG }}$	4		23	V

I/O THRESHOLDS

SCL, SDA and ENB Threshold Voltage Voltage Increasing, Logic High Voltage Decreasing, Logic Low High Low ADJ Input Threshold Voltage Voltage Increasing, Logic High Voltage Decreasing, Logic Low High LowV_{IH} V_{IL}	1.2			V		
INTB and SDA Output Low Voltage (Note 8)	IOUT = 1 mA, logic Low asserted	$\mathrm{V}_{\mathrm{IH} \text { _ADJ }}$	0.3			V

RESISTANCE

On-resistance of Power FET	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	r_{ON}		7.5	
Pull-down resistor on ENB		r_{PD}			1000

MOISTURE DETECTION

Current Source for Moisture Detection	Set by register: 04h	$\mathrm{I}_{\mathrm{SRC}}$	0.001		10	mA
Settle time for ISRC and ADC (Note 8)		$\mathrm{t}_{\mathrm{SET}}$			60	$\mu \mathrm{~s}$
Resolution of ADC		RES	8			Bits
ADC Full Scale Voltage Range	Powered by $\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\mathrm{DD}} \geq 2.1 \mathrm{~V}$	$\mathrm{~V}_{\text {FSV }}$	0		2.04	V
LSB Voltage of ADC		$\mathrm{V}_{\text {LSB }}$		8		mV

6. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at $\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
7. Refer to the APPLICATION INFORMATION section.
8. Values based on design and/or characterization.
9. Depends on the capacitance on ADJ pin.

Table 5. ELECTRICAL CHARACTERISTICS $V_{i n}=2.5$ to $23 \mathrm{~V}, \mathrm{C}_{\text {in }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$; For typical values $\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {in }} \leq 3 \mathrm{~A}, \mathrm{C}_{\text {in }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; unless otherwise noted. (Note 6)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit

1^{2} C INTERFACE

SCL clock frequency	Stand Mode	$\mathrm{f}_{\text {SCL }}$		100		kHz
	Fast Mode			400		kHz
	Fast Mode Plus			1000		kHz
Bus Free Time Between STOP and START conditions (Note 8)	Stand Mode	$t_{\text {BUF }}$		4.7		$\mu \mathrm{s}$
	Fast Mode			1.3		$\mu \mathrm{s}$
	Fast Mode Plus			0.5		μs
START or Repeated START Hold Time (Note 8)	Stand Mode	$\mathrm{t}_{\text {HD } ; \text { STA }}$		4		μs
	Fast Mode			0.6		$\mu \mathrm{s}$
	Fast Mode Plus			0.26		μs
LOW Period of SCL Clock (Note 8)	Stand Mode	t Low		4.7		$\mu \mathrm{s}$
	Fast Mode			1.3		$\mu \mathrm{s}$
	Fast Mode Plus			0.5		μs
HIGH Period of SCL Clock (Note 8)	Stand Mode	$\mathrm{t}_{\mathrm{HIGH}}$		4		$\mu \mathrm{s}$
	Fast Mode			0.6		$\mu \mathrm{s}$
	Fast Mode Plus			0.26		$\mu \mathrm{s}$
Repeated START Setup Time (Note 8)	Stand Mode	tsu;STA		4.7		$\mu \mathrm{s}$
	Fast Mode			0.6		$\mu \mathrm{s}$
	Fast Mode Plus			0.26		$\mu \mathrm{s}$
Stop Condition Setup Time (Note 8)	Stand Mode	${ }_{\text {tsu }}$ STO		4		$\mu \mathrm{s}$
	Fast Mode			0.6		$\mu \mathrm{s}$
	Fast Mode Plus			0.26		$\mu \mathrm{s}$
Data Setup Time (Note 8)	Stand Mode	tsu;DAT		250		ns
	Fast Mode			100		ns
	Fast Mode Plus			50		ns
Data Hold Time (Note 8)	Stand Mode	$\mathrm{t}_{\mathrm{HD} ; \text { DAT }}$	0		3.45	$\mu \mathrm{s}$
	Fast Mode		0		0.9	$\mu \mathrm{s}$
	Fast Mode Plus		0		0.45	$\mu \mathrm{s}$
SCL Rising Time (Note 8)	Stand Mode	$\mathrm{t}_{\mathrm{RCL}}$	$20+0.1 C_{b}$		1000	ns
	Fast Mode		$20+0.1 C_{b}$		300	ns
	Fast Mode Plus		$20+0.1 C_{b}$		120	ns
SDA Rising Time (Note 8)	Stand Mode	$t_{\text {RDA }}$	$20+0.1 C_{b}$		1000	ns
	Fast Mode		$20+0.1 C_{b}$		300	ns
	Fast Mode Plus		$20+0.1 C_{b}$		120	ns
SDA Falling Time (Note 8)	Stand Mode	$t_{\text {FDA }}$	$20+0.1 C_{b}$		300	ns
	Fast Mode		$20+0.1 C_{b}$		300	ns
	Fast Mode Plus		$20+0.1 C_{b}$		120	ns
Capacitive Load for SDA and SCL		C_{b}			400	pF

6. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at $\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
7. Refer to the APPLICATION INFORMATION section.
8. Values based on design and/or characterization.
9. Depends on the capacitance on ADJ pin.

Table 5. ELECTRICAL CHARACTERISTICS $V_{i n}=2.5$ to $23 \mathrm{~V}, \mathrm{C}_{\text {in }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$; For typical values $\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {in }} \leq 3 \mathrm{~A}, \mathrm{C}_{\text {in }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; unless otherwise noted. (Note 6)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit

$1^{2} \mathrm{C}$ INTERFACE

Pulse width of spikes which must be suppressed by input filter (Note 8)		$\mathrm{t}_{\text {SP }}$	0		50	ns
Slave Address	Read			1101100		
	Write					

TIMING

Hard-short protection auto-restart time	Time from power switch turned off to being turned on	thS_RST	200	ms
Interrupt maximum duration		tintb	1000	ms
De-bounce Time of Power FET turned on	Time from $2.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IN_OVLO }}$ to $\mathrm{V}_{\text {OUT }}=0.1 \times \mathrm{V}_{\text {IN }}$	tsw_DEB	22	ms
Soft-Start Time (Note 8)	Time from de-bounce time finished to Power Switch fully turn on	tss	15	ms
Switch Turn-On rising Time (Note 8)	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=22 \mu \mathrm{~F},$ $\mathrm{V}_{\text {OUT }}$ from $0.1 \times \mathrm{V}_{\text {IN }}$ to $0.9 \times \mathrm{V}_{\text {IN }}$	t_{R}	2	ms
Switch Turn-Off Time (Note 8)	$\begin{aligned} & R_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mu \mathrm{~F}, \text { time from } \mathrm{V}_{\mathrm{IN}}> \\ & \mathrm{V}_{\mathrm{OVLO}} \text { to } \mathrm{V}_{\mathrm{OUT}}=0.9 \times \mathrm{V}_{\mathrm{IN}} \end{aligned}$			
	Internal OVP level		50	ns
	External OVP level (Note 9)		100	ns

THERMAL SHUTDOWN

Thermal Shutdown Temperature (Note 8)		T_{SD}	-	130	-	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis (Note 8)		T_{SH}	-	20	-	${ }^{\circ} \mathrm{C}$

6. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at $\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
7. Refer to the APPLICATION INFORMATION section.
8. Values based on design and/or characterization.
9. Depends on the capacitance on ADJ pin.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 3. ON-resistance @ VIN = 5 V

Figure 5. ON-resistance vs. Input Voltage

Figure 4. ON-resistance @ VIN = 23 V

Figure 6. Quiescent Current vs. Input Voltage

Function Description

General

FPF2283CUCX is an OVP power switch to protect next stage system which is optimized to lower voltage working condition. The device includes ultra low on-resistance power FET ($7 \mathrm{~m} \Omega$) and super fast OVP response time (50 ns).

The device integrates moisture detection function to detect the resistance on VIN side. The communication with processor can be done via $\mathrm{I}^{2} \mathrm{C}$ interface.

Power MOSFET

The FPF2283CUCX integrates an N -type MOSFET with $8 \mathrm{~m} \Omega$ resistance. The power FET can work under $2.8 \mathrm{~V} \sim$ 23 V and up to 7 A DC current capability.

Power Supply

The FPF2283CUCX is supplied by both VIN and VDD. When both VDD and VIN drop below threshold, the entire chip will stop working. When only VDD drops, detection mode will not be working anymore.

Enable Control

The ENB pin is active low control of FPF2283CUCX with $1 \mathrm{M} \Omega$ pull down resistor. When ENB is tight to ground or floating, the device is alive and ready to be configured by internal registers. When ENB is HIGH, the device will be turned off entirely including the power switch.

Under Voltage Lockout

FPF2283CUCX power switch will be turned off when the voltage on VIN is lower than the UVLO threshold VIN_UV_F.

Whenever VIN voltage ramps up to higher than $\mathrm{V}_{\text {IN_UV_R }}$, the register 0 x 01 will be reset to default value and the power FET will be turned on automatically after $t_{\text {DEB }}$ de-bounce time if there is no OV or OT condition.

Over Voltage Lockout

The power FET will be turned off whenever VIN voltage higher than $\mathrm{V}_{\text {IN_OVLO }}$. The value of $\mathrm{V}_{\text {IN_OVLO }}$ can be set by external resistor ladder or by internal registers via $\mathrm{I}^{2} \mathrm{C}$ communication.

When $\mathrm{V}_{\mathrm{ADJ}} \leq 0.15 \mathrm{~V}$ or OV MODE $=1, \mathrm{~V}_{\text {OVLO }}$ is decided by internal registers. When $\mathrm{V}_{\mathrm{ADJ}}>0.3 \mathrm{~V}$ and OV_MODE $=0$, the power switch will be turned off once $\mathrm{V}_{\text {ADJ }}>\mathrm{V}_{\text {OVLO_TH. }}$. The external resistor ladder can be decided according to the following equation:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}_{-} \mathrm{OVLO}}=\mathrm{V}_{\mathrm{OVLO}} \mathrm{TH} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \tag{eq.1}
\end{equation*}
$$

where R1 and R2 are the resistors in Figure 1.
INTB will be triggered to ground when OV event appears. At the meantime, OV_FLG will be set to 1 and latched.

Hard Short Protection

When the VOUT is short to ground, the power switch will be turned off to protect the system and power supply. If
hard-short condition keeps, the switch will be turned off and re-try again after t_{HS} _RST.

Thermal Shutdown

When the device is in the switch mode, to protect the device from over temperature, the power switch will be turned off when the junction temperature exceeds T_{SD}. INTB will be triggered to ground. At the meantime, OT_FLG will be set to 1 and latched. The switch will be turned on again when temperature drop below $\mathrm{T}_{\mathrm{SD}}-\mathrm{T}_{\mathrm{SH}}$.

Interrupt

The processor recognizes interrupt signals by observing the INTB signal of FPF2283CUCX, which is active LOW and open-drain. Interrupts are masked during VIN or VDD power up. The INTB pin is default floating in preparation for an interrupt.
By default, when the following event occurs, INTB transitions LOW: Over Voltage Lockout, Over Current Protection, Over Temperature Protection, Over TAG of VIN, Detection Timeout, Power Switch turned on, Power applied on VIN.

When the following event occurs, INTB transitions HIGH: Read clear, Interrupt time-out, tDET start, Power down, Hardware disable; ENB pin is pulled.

Moisture detection

FPF2283CUCX provide a Moisture Detection, or called resistance detection, feature to help the system detect any risk on VBUS. The detection can be setup via $I^{2} \mathrm{C}$ bus.

The Moisture Detection includes two parts:

1. A programmable current source which will be applied to VIN;
2. An 8-bits ADC to detect the voltage on VIN.

While the voltage value is read via $\mathrm{I}^{2} \mathrm{C}$, resistance between VIN and GND can be calculated through the formula:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{VIN}}=\frac{\mathrm{V}_{\mathrm{VIN}}}{\mathrm{I}_{\mathrm{SRC}}} \tag{eq.2}
\end{equation*}
$$

Where $\mathrm{V}_{\text {VIN }}$ is a value can be looked up from the value of register 0x08.

The Moisture Detection will be implemented during $t_{\text {DET }}$. $t_{\text {DET }}$ is only valid when all the following conditions met:

1. The register DET_EN is set to 1 ' b 1 ;
2. The status is under detecting period according to $\mathrm{t}_{\text {BLNK }}$ and $\mathrm{t}_{\text {DET }}$ set by register 05 h .
The moisture detection will only be available when external supply VDD is applied. The detection result can be used to decide if there is significant leakage on VBUS or other power line. The programmable current source is convenient for different measurement range and for different input capacitance.
The moisture detection function makes it possible for system to find out the abnormal condition on USB connector
before power source is applied. It provides a safer way than temperature detection to prevent huge leakage burning connector.

$1^{2} \mathrm{C}$ interface

FPF2283CUCX allows $\mathrm{I}^{2} \mathrm{C}$ communication to program the registers. Registers will control the OVP, I ISC and ADC for moisture detection. $\mathrm{I}^{2} \mathrm{C}$ communication is only valid when VDD supply is higher than 1.5 V . The $\mathrm{I}^{2} \mathrm{C}$ of

FPF2283CUCX has 3 modes for different speed. Different speed has different power consumption level.

The device has its slave address for $\mathrm{I}^{2} \mathrm{C}$ communication with fixed length of 7-bits (7'b1101100).

Register Mapping

There are registers integrated in FPF2283CUCX. The registers can be used to control the device or get the status information. Register table is followed:

Address	Description	Defaul t Value	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
0x00	ID Register		0	0	0	0	1	0	0	1
0×01	Enable Register	00 h	SW_ENB	DET_EN	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
0x02	Detection status Register	00 h	PON_STS	TAG_STS	TMO_STS	SW_STS	Reserved	Reserved	Reserved	Reserved
0×03	Switch Flag Register	00 h	Reserved	Reserved	Reserved	Reserved	Reserved	OV_FLG	HS_FLG	OT_FLG
0x04	Interrupt mask register	00 h	PON_MSK	TAG_MSK	TMO_MSK	SW_MSK	Reserved	OV_MSK	HS_MSK	OT_MSK
0x05	Working Mode	30 h	Reserved	RNG2	RNG1	RNGO	OV_MODE	Reserved	OV1	OVO
0×06	Isource to VIN	00 h	Reserved	Reserved	Reserved	Reserved	ISRC3	ISRC2	ISRC1	ISRCO
0×07	Isource Working Time	00 h	TDET3	TDET2	TDET1	TDET0	TBLK3	TBLK2	TBLK1	TBLK0
0×08	$\begin{gathered} \text { Voltage on VIN } \\ (0 \mathrm{~V} \sim 2.04 \mathrm{~V}, \\ 8 \mathrm{mV} \text { LSB }) \end{gathered}$	00 h	VIN7	VIN6	VIN5	VIN4	VIN3	VIN2	VIN1	VINO
0x09	Set Tag of VIN	FF h	TH_VIN7	TH_VIN6	TH_VIN5	TH_VIN4	TH_VIN3	TH_VIN2	TH_VIN1	TH_VIN0

Identification Register

Address: 00h, Bit [7:0]
Type: Read Only
Description: Vendor ID and Revision ID

Bit Name	Bit \#	Value	
VID	$7: 3$	5'b00001	Vendor ID for customer recognition
RID	$2: 0$	3^{\prime} b001	Revision ID

Enable Register

Address: 01h, Bit [7:6]
Default Value: 2'b00
Type: Read / Write
Function: Control the working mode of FPF2283CUCX

Bit Name	Bit \#	Value	Description
SW_ENB	7	0 (Default)	Written by processor via $\mathrm{I}^{2} \mathrm{C}$ or cleared during POR. Turned on the power switch if UV, OV, Hard Short, OT condition cleared and detection not being implemented.
		1	Written by processor via $\mathrm{I}^{2} \mathrm{C}$. Power switch OFF.
DET_EN	6	0 (Default)	Written by processor via $\mathrm{I}^{2} \mathrm{C}$ or cleared during POR. Moisture Detection is not applied until the state of this bit changed. The detection related registers will not be reset.
		1	Written by processor via $\mathrm{I}^{2} \mathrm{C}$. Moisture Detection turned on. If VIN voltage is lower than VIN_UVLO_F, ISRC and ADC will be applied on VIN in DEET, which is defined by register 04h.

NOTE: The status 2'b01 is invalid. Any writing action 2'b01 to these two bits will be looked as invalid writing and not executed.

The register SW_ENB is an active-low control bit for the Switch Mode. Writing SW_ENB to 1 will turn off the power FET in any case, while writing it to 0 will switch the device into Switch Mode. In Switch Mode, the power FET will be turned on if no over stress condition is detected for at least $t_{\text {DEB }}$.

The register DET_EN is an active-high control bit for the Detection Mode. When DET_EN $=0$, the moisture detection setup (including $I_{\text {SRC }}$ and $\overline{A D C}$) will not be implemented. When DET_EN = 1, the device will enter the detection mode. During Detection Mode, current source and ADC will work according to the setup in register 0x06 and 0x07.

Detection Status Register

Address: 02h, Bit [7:0]
Default Value: 3'b000
Type: Read

Bit Name	Bit \#	Value	Description
PON_STS	7	0 (Default)	Initialed by POR or set by function defined. Indicate the condition that VIN is lower than $\mathrm{V}_{\text {IN_UVLO_F }}$
		1	Set by FPF2283CUCX. The voltage on VIN is higher than VIN UVLO R when ENB is low.
TAG_STS	6	0 (Default)	Initialed by POR or cleared when the value in register 08h is smaller than the value in 09h.
		1	Set by FPF2283CUCX. The value in register 08h is larger than the value in 09h.
TMO_STS	5	0 (Default)	Initialed by POR or cleared when tDET begins. Refer to diagram.
		1	Set by FPF2283CUCX during tBLNK. Refer to diagram.
SW_STS	4	0 (Default)	Initialed by POR or cleared when the power switch is turned off when ENB tight low.
		1	Set by FPF2283CUCX. The power switch is turned on when ENB tight low.

PON_STS is a register bit indicates the power on status. Unless ENB pin is pulled down to ground, a logical ' 0 ' means VIN voltage is lower than UVLO threshold, while a logical ' 1 ' means VIN voltage is higher than UVLO level. An interrupt will be sent out when VIN rises above UVLO level.

TAG_STS is a "target reached" indicate register for moisture Detection Mode. When the device is in this mode, it will monitor VIN voltage. Once VIN is higher than the threshold level (set by register 0x09) during Detection

Mode, TAG_STS will be set to 1 and interrupt signal will be triggered via INTB pin.
TMO_STS is a status register for "time-out" situation. During Detection Mode, it will suggest if the device is in "detection" period or "blank" period. When it is in "detection" period, TMO_STS will be 0 . When it is in "blank" period, TMO_STS will be 1. Every time the status is switched from "detection" period to "blank" period, interrupt signal will be sent our via INTB pin. Figure x is a reference timing diagram for that.

Figure 7. TMO_STS and Related Interrupt

SW_STS is a status register for power switch. It indicates if the power FET is on or off. When the FET is in conducting condition, SW_STS is 1 . When the FET is in isolating condition, SW_STS is 0 . Every time the power FET is turned on, interrupt signal will be triggered.

Power Switch FLAG Register

Address: 03h, Bit [2:0]
Default Value: 3'b000
Type: Read / Clear

Bit Name	Bit \#	Value	
OV_FLG	2	0 (Default)	Initialed by POR. Be 0 as long as VIN is lower than $V_{\text {OVLO. }}$
		1	Set and latched by FPF2283CUCX when ENB is logical LOW and VIN is higher than $\mathrm{V}_{\text {OVLO }}$.
HS_FLG	1	0 (Default)	Initialed by POR. Be 0 as long as VOUT is high enough.
		1	Set and latched by FPF2283CUCX and kept until this byte been read.
OT_FLG	0	0 (Default)	Initialed by POR. Be 0 as long as the junction temperature is lower than TSDN.
		1	Set and latched by FPF2283CUCX when the junction temperature is higher than $\mathrm{T}_{\text {SDN. }}$

OV_FLAG is a flag indicator for over voltage protection. When the device is in Switch Mode, SW_ENB $=0$, power switch will be turned off and OV_FLG will be latched to 1 when VIN $>\mathrm{V}_{\text {OVLO }}$. Interrupt will also be asserted in this case. VovLO is decided by the register byte $0 x 03$ and external resistor ladder (Figure 1). The action of reading $0 x 02$ will reset OV_FLG and INTB although they might be triggered again if VIN is still under over voltage stress.

HS_FLG is a flag indicator for hard short circuit protection. When the device is in Switch Mode, SW_ENB $=0$, power switch will be turned off and HS_FLG will be latched to 1 and INTB will be asserted, when the VOUT encounters hard-short to ground. The action of reading 0x02 will reset HS_FLG and de-asserted INTB. However, the power switch will keep OFF for t_{HS} RST. After t_{HS} RST, the switch will be re-started again. If the short condition still exists, the device will be turned off again.

OT_FLG is a flag indicator for over temperature protection. When the device is in Switch Mode, SW_ENB $=0$, power switch will be turned off and OT_FLG will be latched to 1 when the device junction temperature exceed $\mathrm{T}_{\text {SDN }}$. The action of reading $0 x 02$ will reset OT_FLG although it might be triggered to 1 again if the temperature is still high.

Figure 8. Timing for OVLO Trip Without

Figure 9. Timing for Power Switch Thermal Shutdown

Mask Register

Address: 04h, Bit [7:0]
Default Value: 8'h00
Type: Write / Read

Bit Name	Bit \#	Value	Description
PON_MSK	7	0 (Default)	Initialed by POR or set by function defined. Interrupt responding to PON_STS is normal.
		1	Set by $\mathrm{I}^{2} \mathrm{C}$. The interrupt INTB will not be triggered because of PON_STS.
TAG_MSK	6	0 (Default)	Initialed by POR or set by function defined. Interrupt responding to TAG_STS is normal.
		1	Set by $\mathrm{I}^{2} \mathrm{C}$. The interrupt INTB will not be triggered because of TAG_STS.
TMO_MSK	5	0 (Default)	Initialed by POR or set by function defined. Interrupt responding to TMO_STS is normal.
		1	Set by $\mathrm{I}^{2} \mathrm{C}$. The interrupt INTB will not be triggered because of TMO_STS.
SW_MSK	4	0 (Default)	Initialed by POR or set by function defined. Interrupt responding to SW_STS is normal.
		1	Set by $\mathrm{I}^{2} \mathrm{C}$. The interrupt INTB will not be triggered because of SW_STS.
Reserved	3	0 (Default)	Do not use
OV_MSK	2	0 (Default)	Initialed by POR or set by function defined. Interrupt responding to OV_FLG is normal.
		1	Set by $\mathrm{I}^{2} \mathrm{C}$. The interrupt INTB will not be triggered because of OV_FLG.
HS_MSK	1	0 (Default)	Initialed by POR or set by function defined. Interrupt responding to HS_FLG is normal.
		1	Set by $\mathrm{I}^{2} \mathrm{C}$. The interrupt INTB will not be triggered because of HS_FLG.
OT_MSK	0	0 (Default)	Initialed by POR or set by function defined. Interrupt responding to OT_FLG is normal.
		1	Set by $\mathrm{I}^{2} \mathrm{C}$. The interrupt INTB will not be triggered because of OT_FLG.

The mask registers will control the interrupt assert behavior. By default, the $0 x 04$ is all 0 . If one bit of it is written to 1 , the relevant STS bit or FLG bit will not trigger INTB when they flip to 1. For example, when SW_MSK=0, interrupt will be asserted if SW_STS turns from 0 to 1 . However, if SW_MSK=1, interrupt will not be asserted by this process.

Register for OVP Internal Threshold

Address: 05h, Bit [1:0]
Default Value: 2'b00
Type: Read / Write
Function: Define the center of rising trigger level of OVP, see the description followed

OV [1:0]	Data	Internal OVP Threshold
Define the internal Over Voltage Lockout center value	2'b00	6.8 V
	2'b01	11.5 V
	2 'b10	17.0 V

Register for OVP Internal Threshold Offset

Address: 05h, Bit [6:4]
Default Value: 3'b011
Type: Read / Write
Function: Define the offset of OVP from center value, see the description followed

RNG [6:4]	Data	Internal OVP offset
Define the OVP offset	3'b000	-600 mV
	3'b001	-400 mV
	3'b010	-200 mV
	3'b011	0 mV
	3'b100	200 mV
	3'b101	400 mV
	3'b110	600 mV
	3'b111	800 mV

When OV_MODE $=0$ or $\mathrm{V}_{\mathrm{ADJ}}<0.15 \mathrm{~V}$, the OVLO level will be decided by external resistor divider (Equation 1). When OV_MODE = 1, the OVLO level will be decided by register 0x05. [OV1:OV0] will decide the OVP level center value and RNG[6:4] will decide the offset value.

For example, when $0 x 06=8$ 'h19 ([OV1:OV0] $=2^{\prime} \mathrm{b} 01$, RNG[6:4]=3'b001, OV_MODE=1), the OVP level of VIN can be calculated as $\mathrm{V}_{\mathrm{OVLO}}=11.5 \mathrm{~V}-0.4 \mathrm{~V}=11.1 \mathrm{~V}$.

Register for $I_{\text {SRC }}$ Current Value

Address: 06h, Bit [3:0]
Default Value: 4’b0000
Type: Read / Write
Function: Define current source amplitude

ISRC [3:0]	Data	ISRC Value
Define Source Current value	4'b0000	$0 \mu \mathrm{~A}$
	4'b0001	$1 \mu \mathrm{~A}$
	4'b0010	$2 \mu \mathrm{~A}$
	4'b0011	$3 \mu \mathrm{~A}$
	4'b0100	$4 \mu \mathrm{~A}$
	4'b0101	$5 \mu \mathrm{~A}$
	4'b0110	$10 \mu \mathrm{~A}$
	4'b0111	$20 \mu \mathrm{~A}$
	4'b1000	$50 \mu \mathrm{~A}$
	4'b1001	$100 \mu \mathrm{~A}$
	4'b1010	$200 \mu \mathrm{~A}$
	4'b1011	$500 \mu \mathrm{~A}$
	4'b1100	1 mA
	4'b1101	2 mA
	4'b1110	5 mA
	4'b1111	10 mA

The internal current source value can be set via $\mathrm{I}^{2} \mathrm{C}$. The register $0 x 06$ can decide it by the above table.

The current source is powered by VDD. It could be used to set the measurement range. In the case that capacitance on VIN is large, a large ISRC could be applied firstly. After the voltage change becomes smoothly, smaller ISRC can be used to save the standby consumption.

Register for ISRC Pulse

Address: 07h, Bit [7:4]
Default Value: 4'b0000
Type: Read / Write
Function: Define $t_{\text {DET }}$, see the description followed

TDET [3:0]	Data	ISRC Pulse Width
Define pulse width $t_{\text {DET }}$ of the current source applied on VIN	4'b0000	$200 \mu s$
	4'b0001	$400 \mu \mathrm{~s}$
	4'b0010	1 ms
	4'b0011	2 ms
	4'b0100	4 ms
	4'b0101	10 ms
	4'b0110	20 ms
	4'b0111	40 ms
	4'b1000	100 ms
	4'b1001	200 ms
	4'b1010	400 ms
	4'b1011	1 s
	4'b1100	2 s
	4'b1101	4 s
	4'b1110	10 s
	4'b1111	Always ON

Register for ISRC Blank Time
Address: 07h, Bit [3:0]
Default Value: 4'b0000
Type: Read / Write
Function: define $\mathrm{t}_{\mathrm{BLNK}}$, see the description followed

TBLK [3:0]	Data	ISRC Apply Period
Define Period tpD of Detection	4'b0000	Single Pulse
	4'b0001	10 ms
	4'b0010	20 ms
	4'b0011	50 ms
	4'b0100	100 ms
	4'b0101	200 ms
	4'b0110	500 ms
	4'b0111	1 s
	4'b1000	2 s
	4'b1001	3 s
	4'b1010	6 s
	4'b1011	12 s
	4'b1100	30 s
	4'b1101	60 s
	4'b1110	120 s
	4'b1111	300 s

NOTE: It should be noticed, when 0×07 is set to 8 'hFO (conflict as single pulse and always ON), always on mode will be dominating.

The detection mode period will be decided by above table and following diagram:

Figure 10. Timing for Detection Period Setup

Register for Detection Target

Address: 09h, Bit [7:0]
Default Value: 8'b00
Type: Read / Write
Function: Define the threshold of moisture detection. This register can be written to a threshold value for 0 V to 2.04 V with $8 \mathrm{mV} /$ step. During detection, once the voltage on VIN exceed the value set by $0 x 09$, the interrupt will be asserted and register TAG_STS (bit[6] of register 0x02) will be set to 1 . By doing that, processor will know when the low resistance condition has disappeared before proceed to the next action.

Figure 11. Timing for TAG_STS and Register 0x09 (TAG_DIR = 0)

APPLICATIONS INFORMATION

Overview of $\mathrm{I}^{2} \mathrm{C}$

The $I^{2} \mathrm{C}$ bus supports bi-directional communications via two signal lines: the SDA (data) line and SCL (clock) line. A combination of these two signals is used to transmit and receive communication start/stop signals, data signals, acknowledge signals, and so on. Both the SCL and SDA signals are held at high level whenever communications are not being performed.

The starting and stopping of communications will be controlled at the rising edge or falling edge of SDA while SCL is at high level. During data transfers, data changes that occur on the SDA line are performed while the SCL line is at low level, and on the receiving side the data is captured while the SCL line is at high level. In either case, the data is transferred via the SCL line at a rate of one bit per clock pulse.

Starting and Stopping $\mathrm{I}^{2} \mathrm{C}$

START condition: SDA level changes from high to low while SCL is at high level
STOP condition: SDA level changes from low to high while SCL is at high level

Repeated START condition (RESTART condition)

Data Transfer and Acknowledge Responses during $\mathrm{I}^{2} \mathrm{C}$ Communication

Data transfers are performed in 8-bit (1 byte) units once the START condition has occurred. There is no limit on the amount (bytes) of data that are transferred between the START condition and STOP condition. The address auto increment function operates during both write and read operations.

Updating of data on the transmitter (transmitting side)'s SDA line is performed while the SCL line is at low level. The receiver (receiving side) captures data while the SCL line is at high level.

When transferring data, the receiver generates a confirmation response (ACK signal, low active) each time an 8 -bit data segment is received. If there is no ACK signal from the receiver, it indicates that normal communication has not been established. (This does not include instances where the master device intentionally does not generate an ACK signal.)
Immediately after the falling edge of the clock pulse corresponding to the $8^{\text {th }}$ bit of data on the SCL line, the
transmitter releases the SDA line and the receiver sets the SDA line to low (= acknowledge) level.

After transmitting the ACK signal, if the Master remains the receiver for transfer of the next byte, the SDA is released at the falling edge of the clock corresponding to the $9^{\text {th }}$ bit of data on the SCL line. Data transfer resumes when the Master becomes the transmitter.
When the Master is the receiver, if the Master does not send an ACK signal in response to the last byte sent from the slave, it indicates to the transmitter that data transfer has ended. At that point, the transmitter continues to release the SDA and awaits a STOP condition from the Master.

Slave Address

The $I^{2} \mathrm{C}$ bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device and the receiving device responds to communications only when its slave address matches the slave address in the received data.
All communications begin with transmitting the [START condition] + [slave address (+ R/W specification)]. The receiving device responds to this communication only when the specified slave address it has received matches its own slave address. Slave addresses have a fixed length of 7 -bits (7 'b1101100). See table for the details. An R/W bit is added to each 7 -bits slave address during 8 -bits transfers.

Operation	Transfer data	Slave Address							R/W bit
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read		1	1	0	1	1	0	0	1 (=Read)
Write									0 (=Write)

Input Decoupling ($\mathrm{C}_{\text {in }}$)

A ceramic or tantalum at least $0.1 \mu \mathrm{~F}$ capacitor is recommended and should be connected close to the FPF2283CUCX package. Higher capacitance and lower ESR will improve the overall line and load transient response.

Output Decoupling ($\mathrm{C}_{\text {out }}$)

The FPF2283CUCX is a stable component and does not require a minimum Equivalent Series Resistance (ESR) for the output capacitor. The minimum output decoupling value is $0.1 \mu \mathrm{~F}$ and can be augmented to fulfill stringent load transient requirements.

Enable Operation

The enable pin ENB will turn the device on or off without $\mathrm{I}^{2} \mathrm{C}$ communication. The threshold limits are covered in the
electrical characteristics table in this data sheet. The turn-on/turn-off transient voltage being supplied to the enable pin should exceed a slew rate of $10 \mathrm{mV} / \mu$ s to ensure correct operation. If the enable function is not to be used then the pin should be connected to Ground.

Thermal Considerations

As power in the FPF2283CUCX increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. When the FPF2283CUCX has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power applications. The
maximum dissipation the FPF2283CUCX can handle is given by:

$$
\begin{equation*}
P_{D(\text { MAX })}=\frac{\left[T_{J(M A X)}-T_{A}\right]}{R_{\theta J A}} \tag{eq.3}
\end{equation*}
$$

Since T_{J} is not recommended to exceed $125^{\circ} \mathrm{C}$, then the FPF2283CUCX soldered on $645 \mathrm{~mm}^{2}, 1 \mathrm{oz}$ copper area, the power dissipated by the FPF2283CUCX can be calculated from the following equations:

$$
\begin{equation*}
P_{D} \approx V_{\text {in }} \cdot\left(I_{Q} @ I_{\text {out }}\right)+I_{\text {out }}^{2} \cdot r_{\text {on }} \tag{eq.4}
\end{equation*}
$$

Hints

$V_{\text {in }}$ and $V_{\text {out }}$ printed circuit board traces should be as wide as possible. Place external components, especially the input capacitor and TVS, as close as possible to the FPF2283CUCX, and make traces as short as possible.

WLCSP20 2.2x1.8×0.574

CASE 567UT
ISSUE O
DATE 07 JUL 2017

BALL A1 INDEX AREA

TOP VIEW

DETAIL A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DATUM C APPLIES TO THE SPHERICAL CROWN OF THE SOLDER BALLS

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	.536	.574	.612
A1	.176	.196	.216
A2	.360	.378	.396
b	.240	.260	.280
D	2.170	2.200	2.230
E	1.770	1.800	1.830
e	0.40 BSC		
x	0.285	0.300	0.315
y	0.285	0.300	0.315

RECOMMENDED
MOUNTING FOOTPRINT
(NSMD PAD TYPE)

| DOCUMENT NUMBER: | 98AON66166G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP20 2.2x1.8x0.574 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG AP22953CW12-7 MAX14919AUP+T MAX14919ATP+ KTS1697AEOAB-TR TCK207AN,LF BD2227G-LBTR TCK126BG,LF XC8111AAA010R-G MPQ5072GG-AEC1-P TCK128BG,LF XC8110AA018R-G XC8110AA010R-G XC8111AA018R-G MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR

