ON Semiconductor ${ }^{*}$

FPF2290
 Over-Voltage Protection Load Switch

Features

- Surge Protection
- IEC 61000-4-5: ± 100 V
- Selectable Over-Voltage Protection (OVP) with OV1 and OV2 Logic inputs
- $\quad 5.9 \mathrm{~V} \pm 100 \mathrm{mV}$
- $10 \mathrm{~V} \pm 100 \mathrm{mV}$
- $14 \mathrm{~V} \pm 280 \mathrm{mV}$
- $\quad 23 \mathrm{~V} \pm 460 \mathrm{mV}$
- Over-Temperature Protection (OTP)
- Ultra-Low On-Resistance: Typ. $33 \mathrm{~m} \Omega$
- ESD Protection
- Human Body Model (HBM): > 2 kV
- Charged Device Model (CDM): $>1 \mathrm{kV}$
- IEC 61000-4-2 Air Discharge: > 15 kV

Applications

- Mobile Handsets and Tablets
- Portable Media Players
- MP3 Players

Description

The FPF2290 features a low -Ron internal FET and an operating voltage range of 2.5 V to 23 V . An internal clamping circuit is capable of shunting surge voltages of $\pm 100 \mathrm{~V}$, protecting downstream components and enhancing system robustness. The FPF2290 features over-voltage protection that powers down the internal FET if the input voltage exceeds the OVP threshold. The OVP threshold is selectable via Logic select pins (OV1 and OV2). Over-temperature protection also pow ers dow n the device at $130^{\circ} \mathrm{C}$ (typical).

The FPF2290 is available in a fully "green" compliant $1.3 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ Wafer-Level Chip-Scale Package (WLCSP) w ith backside laminate.

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FPF2290BUCX-F130	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$	HR	12 -Ball, 0.4 mm Pitch WLCSP	Tape \& Reel

Block Diagram

Figure 1. Functional Block Diagram
Note:

1. Setting OV1 and OV2 logic level are recommended before $\mathbb{I N}$ is applied.

Pin Configuration

Figure 2. Pin Configuration (Top View)

Figure 3. Pin Configuration (Bottom View)

Pin Definitions

Name	Bump	Type	Description		
\mathbb{N}	B3, C2, C3	Input/Supply	Sw itch Input and Device Supply		
OUT	A2, A3, B2	Output	Sw itch Output to Load	1	Hi-Z: VIN < VIN_miN OR ViN > VovLo
\#ACOK	B1	Output	Pow er Good (Open-Drain Output)	0	LOW: Voltage Stable
\#EN	A1	Input	Device Enable (Active LOW)		
OV1/2	C1, C4	Input	OVLO Selection Input (see Table 1) Note: Appy OV1 and OV2 Logic levels before VIN is applied.		
GND	A4, B4	Supply	Device Ground		

Table 1. OVLO Selection

OV1	OV2	OVP Trip Level
LOW	LOW	$5.9 \mathrm{~V} \pm 100 \mathrm{mV}$
HIGH	LOW	$10 \mathrm{~V} \pm 100 \mathrm{mV}$
LOW	HIGH	$14 \mathrm{~V} \pm 280 \mathrm{mV}$
HIGH	HIGH	$23 \mathrm{~V} \pm 460 \mathrm{mV}$

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
VIN	V_IN to GND \& V_IN to V_OUT = GND or Float		-0.3	29.0	V
Vout	V_OUT to GND		-0.3	V IN +0.3	V
Vovn	OV1 and OV2 to GND		-0.3	6.0	V
VEN_ACOK	Maximum DC Voltage Allow ed on \#EN or \#ACOK Pin			6	V
In	Sw itch VO Current (Continuous)			4.5	A
tpd	Total Pow er Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.48	W
TSTG	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
TJ	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature (Soldering, 10 Seconds)			+260	${ }^{\circ} \mathrm{C}$
Θ_{JA}	Thermal Resistance, Junction-to-Ambient ${ }^{\text {2 }}$ ((1-in. ${ }^{2}$ Pad of 2-oz. Copper)			84.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	IEC 61000-4-2 System Level ESD	Air Discharge	15		kV
		Contact Discharge	8		
	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	All Pins	2		
	Charged Device Model, JESD22-C101	All Pins	1		
Surge	IEC 61000-4-5, Surge Protection	VIN	± 100		V

Note:

2. Measured using 2S2P JEDEC std. PCB.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\mathbb{N}}$	Supply Voltage	2.5	23.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{N}}=2.5$ to 23 V , unless otherw ise indicated. Typical values are $\mathrm{V}_{\mathbb{N}}=5.0 \mathrm{~V}$, $\mathrm{l}_{\mathbb{N}} \leq 3 \mathrm{~A}, \mathrm{Cl}_{\mathrm{N}}=$ $0.1 \mu \mathrm{~F}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Min.	Typ.	Max.	Unit
Basic Operation							
Vin_Clamp	Input Clamping Voltage	$\mathrm{l}_{\mathrm{N}}=10 \mathrm{~mA}$			35		V
lQ	Input Quiescent Current	$\mathrm{V}_{\mathbb{I}}=5 \mathrm{~V}, \# \mathrm{EN}=0 \mathrm{~V}$			80	115	$\mu \mathrm{A}$
lin_Q	OVLO Supply Current	$\begin{aligned} & \text { OV1 = LOW, OV2 }=\mathrm{LOW} \\ & \mathrm{~V}_{\text {IN }}=6.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$			63	90	$\mu \mathrm{A}$
Vin_ovLo	Over-Voltage Trip Level	VIN Rising	$\begin{aligned} & \mathrm{OV} 1=\mathrm{LOW}, \\ & \mathrm{OV} 2=\mathrm{LOW} \end{aligned}$	5.80	5.90	6.00	V
		$V_{\text {IN }}$ Falling		5.75			
		VIN Rising	$\begin{aligned} & \mathrm{OV} 1=\mathrm{HIGH}, \\ & \mathrm{OV} 2=\mathrm{LOW} \end{aligned}$	9.90	10.00	10.10	
		$V_{\text {IN }}$ Falling		9.85			
		$V_{\text {IN }}$ Rising	$\begin{aligned} & \mathrm{OV} 1=\mathrm{LOW}, \\ & \mathrm{OV} 2=\mathrm{HIGH} \end{aligned}$	13.72	14.0	14.28	
		VIN Falling		13.52			
		V IN Rising	$\begin{aligned} & \mathrm{OV} 1=\mathrm{HIGH}, \\ & \mathrm{OV} 2=\mathrm{HIGH} \end{aligned}$	22.54	23.0	23.46	
		$V_{\text {IN }}$ Falling		22.34			
Ron	Resistance from Vin to Vout	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, lout $=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			33	40	$\mathrm{m} \Omega$
Cout	OUT Load Capacitance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$		0.1		1000.0	$\mu \mathrm{F}$
TsdN	Thermal Shutdow $\mathrm{n}^{(3)}$				130		${ }^{\circ} \mathrm{C}$
TSDN_HYS	Thermal Shutdow n Hysteresis ${ }^{(3)}$				20		${ }^{\circ} \mathrm{C}$

Digital Signals

Vol	\#ACOK Output Low Voltage	I INK $=1 \mathrm{~mA}$		0.4	V
lacok	\#ACOK Leakage Current	$\mathrm{V}_{1 / \mathrm{O}}=3.0 \mathrm{~V}$, \#ACOK Deasserted		0.5	$\mu \mathrm{A}$
V_{H}	Input HIGH Voltage (\#EN, OVx)	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to $\mathrm{V}_{\text {ovlo }}$	1.2		V
VIL	Input LOW Voltage (\#EN, OVx)	V IN $=2.5 \mathrm{~V}$ to Vovlo		0.5	V
lin	Input Leakage Current (\#ЕN, OVx)	V IN $=5.0 \mathrm{~V}, \mathrm{~V}$ Out $=$ Float		1.0	$\mu \mathrm{A}$

Timing Characteristics

toeb	Debounce Time	Time from 2.5 $\mathrm{V}<\mathrm{V}_{\mathbb{I}}<\mathrm{V}_{\text {IN_oveo }}$ to $\mathrm{V}_{\text {OUT }}=0.1 \times \mathrm{V}_{\text {IN }}$	10	15	20	ms
tstart	Soft-Start Time	Time from $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{N} _ \text {min }}$ to $0.2 \times$ \#ACOK, $\mathrm{V}_{\mathrm{IO}}=1.8 \mathrm{~V}$ with $10 \mathrm{k} \Omega$ Pull-up Resistor	20	30	40	ms
ton	Sw itch Turn-On Time	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=22 \mu \mathrm{~F}, \mathrm{~V}_{\text {out }} \text { from } \\ & 0.1 \times \mathrm{V}_{\text {IN }} \text { to } 0.9 \times \mathrm{V}_{\text {IN }} \end{aligned}$	1	3	5	ms
toff	Sw itch Turn-Off Time ${ }^{(3)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{CL}_{\mathrm{L}}=0 \mu \mathrm{~F}, \mathrm{~V}_{\text {IN }}>\mathrm{V}_{\text {OVLO }} \\ & \text { to } \mathrm{V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IN }} \end{aligned}$			150	ns

Note:

3. Guaranteed by characterization and design.

Timing Diagrams

Figure 4. Timing for Power Up and Normal Operation

Figure 5. Timing for OVLO Trip

Product-Specific Dimensions

\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
$1288 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$1828 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$314 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$	$244 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$

Physical Dimensions

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS ± 39 MICRONS (547-625 MICRONS).
F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILENAME: MKT-UC012ZCrev2.

BOTTOM VIEW
H. ON SEMICONDUCTOR RECOMMENDS THAT LANDS IN THE LANDPATTERN ARE AT ${ }^{1}$ LEAST .215MM DIAMETER AS MEASURED AT THE BOTTOM OF THE LAND, NOT THE TOP EDGE.

Figure 6. 12-Ball, 3×4 Array, 0.4 mm Pitch, Wafer-Level Chip-Scale Package (WLCSP)

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. Amer ic an Technical Support: 800-282-9855 Toll Free USA/Canada.
Europe, Middle East and Africa Technical Suppor
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semic onductor Website: www.onsemi.com
Order Literature: http://mww.onsemi.com/orderit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P MC15XS3400DHFKR2 FPF1015 FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2 NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073

