

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
Dual Channel Over-Voltage Protection Load Switch

Features

- Dual Channel Power Switch ($\mathrm{V}_{\text {Bus }}$ and V_{IF})
- Surge Protection under IEC 61000-4-5
- $\quad V_{\text {Bus }} \pm 100 \mathrm{~V}$
- $\quad V_{\text {IF }}: \pm 40 \mathrm{~V}$
- Input Voltage Range
- $\quad V_{\text {Bus: }} 2.5 \mathrm{~V} \sim 23 \mathrm{~V}$
- $\quad \mathrm{V}_{\mathrm{IF}}: 3.1 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- Max. Continuous Current Capability
- $\quad V_{\text {bus: }} 2.5 \mathrm{~A}$
- $\quad V_{\text {IF }}: 6 A$
- Ultra Low On-Resistance
- $V_{\text {bus: }}$ Typ. $33 \mathrm{~m} \Omega$
- V_{IF} : Typ. $11 \mathrm{~m} \Omega$
- Over-Voltage Protection
- $\quad V_{\text {Bus }}: 5.95 \mathrm{~V} \pm 50 \mathrm{mV}$
- $\quad V_{I F}: 5.25 \mathrm{~V} \pm 250 \mathrm{mV}$
- LDO Output based $\mathrm{V}_{\text {BUS_dEt }}$ for $\mathrm{V}_{\text {BUS }}$ Detection
- Active Low Control for $V_{\text {bus }}$ Path
- OTG Functionality on $\mathrm{V}_{\text {Bus }}$ Path
- Conditional Active High Control for V_{IF} Path
- Reverse-Current Blocking for V_{IF} Path

Description

The FPF2487 features a 2-channel power switch, which offers surge protection and Over-Voltage Protection (OVP), to protect downstream components and enhancing overall system robustness.
Channel one ($\mathrm{V}_{\text {BUS }}$) is an active-low, $28 \mathrm{~V} / 2.5 \mathrm{~A}$ rated, power MOSFET switch with an internal clamp supporting $\pm 100 \mathrm{~V}$ surge protection, highly accurate fixed OVP at $5.95 \mathrm{~V}(\pm 50 \mathrm{mV})$, and OTG functionality. Channel two (V_{IF}) is a conditional active-high, $6 \mathrm{~V} / 6 \mathrm{~A}$ rated, power MOSFET switch with an integrated TVS supporting $\pm 40 \mathrm{~V}$ surge protection and fixed OVP at $5.25 \mathrm{~V}(\pm 250 \mathrm{mV})$. V IF also provides Reverse Current Blocking (RCB) during its OFF state to minimize leakage current.
$V_{\text {BUS_DET }}$ is paired with always ON LDO to power downstream devices even with $V_{B U S}$ is greater than 2.5 V , even when disabled through the ONB pin. This provides power sequence control or a host controlled configuration in system.
The FPF2487 is available in a 15-bump, $1.6 \mathrm{~mm} x$ 2.2 mm Wafer-Level Chip-Scale Package (WLCSP) with 0.4 mm pitch

Related Resources

- http://www.fairchildsemi.com/

Applications

- Mobile Handsets and Tablets
- Wearable Devices

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FPF2487UCX	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$	GX	$15-$ Ball, 0.4 mm Pitch WLCSP	Tape \& Reel

Application Diagram

Figure 1. Typical Application

Block Diagram

Pin Configuration

Figure 3. Pin Configuration (Top View)

Figure 4. Pin Configuration (Bottom View)

Pin Definitions

Name	Bump	Type	
V $_{\text {Bus }}$	B2, B3	Input/Supply	Switch Input and Device Supply
V $_{\text {OUT }}$	A1, A2	Output	Switch Output to Load
$\mathrm{V}_{\text {IF }}$	D2, D3, E3	Input/Supply	Switch Input and Device Supply
BAT	D1, E1, E2	Output	Switch Output to Battery
V $_{\text {BUS_DET }}$	C3	Output	Regulated Output according to $\mathrm{V}_{\text {Bus }}$
ON	B1	Input	Active HIGH: $\mathrm{V}_{\text {IF }}$ path only and when BAT is valid prior to $\mathrm{V}_{\text {IF }}$
ONB	A3	Input	Active LOW: $\mathrm{V}_{\text {Bus }}$ path only
GND	C1, C2	GND	Ground

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
$V_{\text {Bus }}$	$\mathrm{V}_{\text {BUS }}$ to GND \& $\mathrm{V}_{\text {BUS }}$ to $\mathrm{V}_{\text {Out }}=$ GND or Float			-0.3	29.0	V
$\mathrm{V}_{\text {IF }}$	$\mathrm{V}_{\text {IF }}$ to GND			$-2^{(1)}$	6	V
$\mathrm{V}_{\text {OUT }}$	Vout to GND			-0.3	$\mathrm{V}_{\mathrm{IN}}+0.3$	V
BAT	BAT to GND			-0.3	$\mathrm{V}_{\text {IF }}+0.3$	V
$V_{\text {Bus_det }}$	$\mathrm{V}_{\text {Bus_det }}$ to GND				8	V
$\mathrm{V}_{\mathrm{ON}(\mathrm{B})}$	ONB or ON to GND				6	V
$\mathrm{I}_{\text {In_vbus }}$	Continuous $\mathrm{V}_{\text {Bus }}$ Current				2.5	A
	Peak V ${ }_{\text {Bus }}$ Current (5 ms)				5	A
lin_VIF	Continuous V IF Current				6	A
	Peak VIF Current (5 ms)				12	A
IIN_VBus_det	Continuous V ${ }_{\text {Bus_det }}$ Current				1	mA
$t_{\text {PD }}$	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				1.54	W
TSTG	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature				+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 Seconds)				+260	${ }^{\circ} \mathrm{C}$
Θ_{JA}	Thermal Resistance, Junction-to-Ambient ${ }^{(2)}$ (1-in. ${ }^{2}$ Pad of 2-oz. Copper)				$81^{(2)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	IEC 61000-4-2 System Level ESD	Air Discharge	15		kV
			Contact Discharge	8		
		Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	All Pins	2		
		Charged Device Model, JESD22-C101	All Pins	1		
Surge		IEC 61000-4-5, Surge Protection	$\mathrm{V}_{\text {BuS }}$	± 100		V
			VIF	± 40		

Notes:

1. Pulsed, 50 ms maximum non-repetitive.
2. Measured using 2S2P JEDEC std. PCB.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\mathrm{BUS}}$	Supply Voltage, $\mathrm{V}_{\mathrm{BUS}}$	2.5	23.0	V
$\mathrm{~V}_{\mathrm{IF}}$	Supply Voltage, V_{IF}	3.1	5.5	V
$\mathrm{C}_{\text {IN }} / \mathrm{C}_{\text {OUT }}$	Input and Output Capacitance	0.1		$\mu \mathrm{~F}$
$\mathrm{C}_{\text {VBUS_DET }}$	Output Capacitance	0.47		$\mu \mathrm{~F}$
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{BuS}}=2.5$ to 23 V , $\mathrm{V}_{\mathrm{IF}}=3.1$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$; Typical values are at $\mathrm{V}_{\mathrm{Bus}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}} \leq 2 \mathrm{~A}$, $\mathrm{V}_{\mathrm{IF}}=4 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Basic Operation						
I_{Q}	Input Quiescent Current	$V_{\text {Bus }}=5 \mathrm{~V}$, ONB=0 V , $\mathrm{V}_{\text {BUS_DET }}$ =Floating		160	250	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IF}}=4 \mathrm{~V}$		100	150	$\mu \mathrm{A}$
$\mathrm{I}_{1 \times \mathrm{Q}}$	OVLO Supply Current	$\mathrm{V}_{\text {BUS }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {BUS_DET }}=$ Floating		150	205	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IF}}=5.5 \mathrm{~V}, \mathrm{BAT}=0 \mathrm{~V}$		100	180	$\mu \mathrm{A}$
$\mathrm{T}_{\text {SDN }}$	Thermal Shutdown ${ }^{(3)}$			140		${ }^{\circ} \mathrm{C}$
TSDN_HYS	Thermal Shutdown Hysteresis ${ }^{(3)}$			20		${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {Bus }}$ to $\mathrm{V}_{\text {OUT }}$ Switch						
VBus_CLAMP	Input Clamping Voltage	$\mathrm{l}_{\mathrm{N}}=10 \mathrm{~mA}$		35		V
VBUs_ovLo	Over-Voltage Trip Level	$V_{\text {BUS }}$ Rising, $\mathrm{T}_{\text {A }}=-40$ to $85^{\circ} \mathrm{C}$	5.90	5.95	6.00	V
		$\mathrm{V}_{\text {Bus }}$ Falling, $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	5.8			V
Ron_vbus	On-Resistance	$\mathrm{V}_{\text {BUS }}=5 \mathrm{~V}$, I IOUT $=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		33	39	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {BUS }}=9 \mathrm{~V}$, lout $=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		33	39	$\mathrm{m} \Omega$
$t_{\text {deb_Vbus }}$	Debounce Time	Time from $V_{\text {BUS_min }}<V_{\text {BUS }}<V_{\text {BUS_ovlo }}$ to $\mathrm{V}_{\text {OUT }}=0.1 \times \mathrm{V}_{\text {BUS }}$		15		ms
tstart_vbus	Soft-Start Time	Time from $\mathrm{V}_{\text {BUS }}=\mathrm{V}_{\text {BUS_MIN }}$ to $0.1 \times \mathrm{V}_{\text {BUS_DET }}$		30		ms
ton_vbus	Switch Turn-On Time	$R_{L}=100 \Omega, C_{L}=22 \mu F, V_{\text {OUT }}$ from $0.1 \times V_{\text {Bus }}$ to $0.9 \times \mathrm{V}_{\text {BUS }}$		3		ms
toff_vbus	Switch Turn-Off Time	$\begin{aligned} & R_{L}=100 \Omega, \text { No }_{L}, V_{\text {BUS }}>V_{\text {BUS_ovLo }} \text { to } \\ & V_{\text {OUT }}=0.8 \times V_{\text {BUS }} \end{aligned}$			150	ns

$V_{\text {IF }}$ to BAT Switch

VIF_CLAMP	Input Clamping Voltage	$\mathrm{l}_{\mathrm{N}}=10 \mathrm{~mA}$		6.4		V
VIF_UVLO	Under-Voltage Trip Level	VIF Rising, $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		2.85	3.05	V
		$\mathrm{V}_{\text {IF }}$ Falling, $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		2.7		V
VIF_ovLo	Over-Voltage Trip Level	$\mathrm{V}_{\text {IF }}$ Rising, $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	5.00	5.25	5.50	V
		$V_{\text {IF }}$ Falling, $T_{A}=-40$ to $85^{\circ} \mathrm{C}$	4.8			V
Ron_VIF	On-Resistance	$\mathrm{V}_{\text {IF }}=3.1 \mathrm{~V}$, lout $=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	15	$\mathrm{m} \Omega$
$\mathrm{I}_{\text {RCB }}$	Reverse Current	$\mathrm{V}_{\mathrm{IF}}=0 \mathrm{~V}$, BAT $=4.4 \mathrm{~V}$		3	7	$\mu \mathrm{A}$
$\mathrm{t}_{\text {DEB_VIF }}$	Debounce Time	Time from $\mathrm{V}_{\text {IF_UVLO }}<\mathrm{V}_{\text {IF }}<\mathrm{V}_{\text {IF_O }}$ ovLo to BAT $=0.1 \times \mathrm{V}_{\text {IF }}^{-}$		15		ms
$t_{\text {Qual_VIF }}$	Qualification Tim	BAT > VIH_BAT First, Time from ON > VIH_ON(B) to BAT Voltage Increase		2		ms
ton_VIF	Switch Turn-On Time	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=22 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }} \text { from } 0.1 \times \mathrm{V}_{\mathrm{IF}} \text { to } \\ & 0.9 \times \mathrm{V}_{\mathrm{IF}} \end{aligned}$		2		ms
toff_VIF	Switch Turn-Off Time	$\mathrm{R}_{\text {L }}=100 \Omega$, $\mathrm{No} \mathrm{C}_{\text {L }}, \mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {OVLO }}$ to $\mathrm{V}_{\text {OUT }}=0.8 \times \mathrm{V}_{\text {IF }}$			150	ns

Note

3. Guaranteed by characterization and design.

Continued on the following page...

Electrical Characteristics (Continued)

Unless otherwise noted, $\mathrm{V}_{\mathrm{BuS}}=2.5$ to 23 V , $\mathrm{V}_{\mathrm{IF}}=3.1$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$; Typical values are at $\mathrm{V}_{\mathrm{Bus}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}} \leq 2 \mathrm{~A}$, $\mathrm{V}_{\mathrm{IF}}=4 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V ${ }_{\text {bus_det }}$						
$V_{\text {bus_det }}$	V bus_det Output Voltage	$V_{\text {BUS }}=6.5 \mathrm{~V}$, $\mathrm{I}_{\text {BUS_DET }}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0		6.5	V
		$\mathrm{V}_{\text {BUS }}=15 \mathrm{~V}, \mathrm{I}_{\text {BUS_DET }}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0	7.0	7.9	V
		$\mathrm{V}_{\text {BUS }}=6.5 \mathrm{~V}$, $\mathrm{I}_{\text {BUS_DET }}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0	6.3	6.5	V
		$\mathrm{V}_{\text {BUS }}=15 \mathrm{~V}, \mathrm{I}_{\text {BUS_DET }}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0	7.0	7.9	V
Digital Signals						
$\mathrm{V}_{\text {IH_ON(B) }}$	Enable HIGH Voltage	$\mathrm{V}_{\text {BUS }}, \mathrm{V}_{\text {IF }}$ Operating Range	1.2			V
$\mathrm{V}_{\text {IL_ON(B) }}$	Enable LOW Voltage	$\mathrm{V}_{\text {BUS }}$, V IF Operating Range			0.5	V
$\mathrm{V}_{\text {IH_bAt }}$	BAT Presence HIGH Voltage	BAT Rising	2.5			V
$\mathrm{V}_{\text {IL_BAT }}$	BAT Presence LOW Voltage	BAT Falling			1.7	V
I Ivbus_det_Leak	V ${ }_{\text {Bus_det }}$ Leakage Current	$\mathrm{V}_{\text {VBus_DEt }}=5 \mathrm{~V}, \mathrm{~V}_{\text {Bus }}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
ON(B)_Leak	ON(B) Leakage Current	$\mathrm{V}_{\text {BUS }}=5 \mathrm{~V}$, V $\mathrm{V}_{\text {OUT }}=$ Float			1	$\mu \mathrm{A}$

Timing Diagrams

Figure 5. Timing for $V_{B u s}$ Power Up/Down and Normal Operation

Figure 6. Timing for V_{Bu} OVLO Operation (ONB=LOW)

Figure 7. Always $\mathrm{ON} \mathrm{V}_{\text {bus_det }}$ Operation (ONB=HIGH)

Timing Diagrams (Continued)

Figure 8. Timing for VIF Power Up/Down and Normal Operation (ON=Don't Care)

Figure 9. Timing for V_{IF} Power Up/Down and Normal Operation with ON Pin

Figure 10. Timing for V_{IF} OVLO Operation (ON=Don't Care)

VIF Turn-On Qualification State Diagram

Figure 11. V_{IF} Turn-On Qualification State Diagram
Notes:
4. Case \#1 is reflecting removable battery system without ON signal.
5. Case \#2 is reflecting embedded battery system with ON signal.

Product-Specific Package Dimensions

D	E	\mathbf{X}	\mathbf{Y}
$2200 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$1600 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$400 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$	$300 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$

TOP VIEW

RECOMMENDED LAND PATTERN (NSMD TYPE)

SIDE VIEWS

NOTES

A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASMEY14.5M, 2009.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 574 ± 38 MICRONS (536-612 MICRONS).

BOTTOM VIEW
F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILNAME: MKT-UC015AC REV2.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC25051YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR VNV35N07-E

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

