

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FPF2495

IntelliMAX ${ }^{\text {TM }} 28$ V, Over-Voltage, Over-Current Protection Load Switch with Adjustable Current-Limit Control

Features

- V_{IN} : $2.5 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- 28 V Absolute Ratings at Vout
- Current Capability: 2 A
- Adjustable Current Limit: 0.05 A ~ 2 A (Typ.)
- 0.1 A~2 A with 10% Accuracy
- < 0.1A with 15\% Accuracy
- RoN: Maximum $100 \mathrm{~m} \Omega$ at $5 \mathrm{~V}_{\mathrm{IN}}$ and 1 A lout
- Output OVP: Min.=5.6 V, Typ.=5.8 V, Max.=6 V
- No Output Discharge During Off State
- Open-Drain OCP on FLAGB
- Thermal Shutdown
- Under-Voltage Lockout (UVLO)
- True Reverse-Current Blocking (TRCB)
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:
- Human Body Model: >2 kV
- Charged Device Model: >2.5 kV
- IEC 61000-4-2 Air Discharge: $>15 \mathrm{kV}$
- IEC 61000-4-2 Contact Discharge: >8 kV

Applications

- Smart Phones, Tablet PCs
- Storage, DSLR, and Portable Devices

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method	Top Mark
FPF2495UCX	-40 to $85^{\circ} \mathrm{C}$	$1.21 \mathrm{~mm} \times 1.21 \mathrm{~mm}$, Wafer-Level Chip-Scale Package (WLCSP)	Tape \& Reel	TH

Description

The FPF2495 advanced load-management switch targets applications requiring a highly integrated solution. It disconnects loads powered from the DC power rail ($<6 \mathrm{~V}$) with stringent off-state current targets and high load capacitances (<100 $\mu \mathrm{F}$). The FPF2495 consists of a slew-rate controlled lowimpedance MOSFET switch ($100 \mathrm{~m} \Omega$ maximum) and integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on power rails. FPF2495 has over-voltage protection and overtemperature protection.

The FPF2495 has a True Reverse-Current Blocking (TRCB) function that obstructs unwanted reverse current from $\mathrm{V}_{\text {OUt }}$ to $\mathrm{V}_{\text {IN }}$ during ON and OFF states. The exceptionally low off-state current drain ($<2 \mu \mathrm{~A}$ maximum) facilitates compliance with standby power requirements. The input voltage range operates from 2.5 V to $5.5 \mathrm{~V}_{\mathrm{DC}}$ to support a wide range of applications in consumer, optical, medical, storage, portable, and industrial-device power management. Switch control is managed by a logic input (active HIGH) capable of interfacing directly with low-voltage control signal / General-Purpose Input / Output (GPIO) without an external pull-down resistor.
The device is packaged in advanced, fully "green" compliant, $1.21 \mathrm{~mm} \times 1.21 \mathrm{~mm}$, Wafer-Level ChipScale Package (WLCSP).

Application Diagram

Figure 1. Typical Application

Note:

1. $\mathrm{C}_{\mathbb{I N}}$ and $\mathrm{C}_{\text {Out }}$ capacitors recommended for improvement of device stability.

Functional Block Diagram

Figure 2. Functional Block Diagram

Pin Configurations

Figure 3. Pin Assignments (Top View)

Figure 4. Pin Assignments (Bottom View)

Pin Description

Pin \#	Name	Description		
A3, B3	$V_{\text {OUT }}$	Switch Output		
A1, B1	$\mathrm{V}_{\text {IN }}$	Supply Input: Input to the power switch		
A2	GND	Ground (true device ground)		
B2				
C3	ON	ON/OFF Control Input: Active HIGH - GPIO compatible	Logic HIGH	Switch Enable
			Logic LOW	Switch Disable
C1	OC Flagb	Fault Output: Active LOW, open-drain output that indicates an input over current. External pull-up resistor to V_{Cc} is required.		
C2	$I_{\text {SET }}$	Current Limit Set Input: A resistor from ISET to ground sets the current limit for the switch.		

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameters	Min.	Max.	Unit
$\mathrm{V}_{\text {PIN }}$	$V_{\text {OUT }}$ to GND, $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$		-0.3	28.0	V
	ON, $\mathrm{V}_{\text {IN }}$, FLAGB, ISET to GND		-0.3	6.0	
Isw	Maximum Continuous Switch Current ${ }^{(4)}$			2.2	A
$t_{\text {PD }}$	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.0	W
TJ	Operating Junction Temperature		-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Junction Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\Theta_{J A}$	Thermal Resistance, Junction-to-Ambient (1-inch Square Pad of 2 oz. Copper)			$\frac{95^{(2)}}{1110^{(3)}}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	2.0		kV
		Charged Device Model, JESD22-C101	2.5		
	IEC61000-4-2 System Level	Air Discharge (VIN, $\mathrm{V}_{\text {ON }}$, V ${ }_{\text {OUt }}$ to GND)	15.0		
		Contact Discharge (VIN, Von, $\mathrm{V}_{\text {OUt }}$ to GND)	8.0		

Notes:

2. Measured using 2S2P JEDEC std. PCB.
3. Measured using 2S2P JEDEC PCB cold plate method.
4. Maximum Junction Temperature $=85^{\circ} \mathrm{C}$.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
$\mathrm{V}_{\mathbb{I N}}$	Supply Voltage	2.5	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise noted; $\mathrm{V}_{\mathrm{IN}}=2.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit
Basic Operation						
$\mathrm{V}_{\text {IN }}$	Input Voltage		2.5		5.5	V
$\mathrm{I}_{\text {(OFF) }}$	Off Supply Current	$\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=$ Open		1	2	$\mu \mathrm{A}$
ISD(OFF)	Shutdown Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\mathrm{GND}$		0.1	4.0	$\mu \mathrm{A}$
I_{Q}	Quiescent Current	$\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$		65	100	$\mu \mathrm{A}$
Ron	On Resistance	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$, l lout $=1 \mathrm{~A}$		70	100	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=1 \mathrm{~A}$		75	105	
Ron	On Resistance ${ }^{(6)}$	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$, $\mathrm{l}_{\text {IUUT }}=1.5 \mathrm{~A}$		70		$\mathrm{m} \Omega$
V_{IH}	ON Input Logic HIGH Voltage	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V	1.15			V
VIL	ON Input Logic LOW Voltage	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V			0.65	V
VIL_fLAG	FLAGB Output Logic LOW Voltage	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, $\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$		0.1	0.2	V
		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{SINK}}=10 \mathrm{~mA}$		0.15	0.30	
$\mathrm{I}_{\text {FLAGB_LK }}$	FLAGB Output HIGH Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Switch On			1	$\mu \mathrm{A}$
Ion	On Input Leakage	$\mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {IN }}$			1.0	$\mu \mathrm{A}$
Ron_PD	Pull-Down Resistance at ON Pin	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.5 \sim 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=\mathrm{HIGH}, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		14		M Ω

Over-Voltage Protection

Vov_TRIP	Output OVP Lockout	Vout Rising Threshold	5.50	5.80	6.00	V
		Vout Falling Threshold		5.50		
$\mathrm{OUT}_{\mathrm{HYS}}$	Output OVP Hysteresis	V out Falling Threshold		0.3		V
tovp	OVP Response Time ${ }^{(6)}$	$\begin{aligned} & \text { lout }=0.5 \mathrm{~A}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {out }} \text { from } \\ & 5.5 \mathrm{~V} \text { to } 6.0 \mathrm{~V} \end{aligned}$	1		$4^{(6)}$	$\mu \mathrm{s}$

Over-Current Protection

ILIM	Current Limit	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=20000 \Omega, \\ & \mathrm{~V}_{\text {OUT }}=1.68 \text { to } 5 \mathrm{~V} \text { with } 15 \% \text { Accuracy }^{(5)} \end{aligned}$	42	50	58	mA
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=2100 \Omega, \\ & \mathrm{~V}_{\text {OUT }}=1.68 \text { to } 5 \mathrm{~V} \text { with } 10 \% \text { Accuracy }^{(5)} \end{aligned}$	450	500	550	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=1070 \Omega, \\ & \mathrm{~V}_{\mathrm{OUT}}=1.68 \text { to } 5 \mathrm{~V} \text { with } 10 \% \text { Accuracy }^{(5)} \end{aligned}$	900	1000	1100	
Vuvio	Under-Voltage Lockout	$\mathrm{V}_{\text {IN }}$ Increasing		2.4		V
		$\mathrm{V}_{\text {IN }}$ Decreasing		2.2		
Vuvlo_HYs	UVLO Hysteresis			200		mV
$\mathrm{V}_{\text {T_RCB }}$	RCB Protection Trip Point	$\mathrm{V}_{\text {OUt }}-\mathrm{V}_{\text {IN }}$		50		mV
$\mathrm{V}_{\mathrm{R} _} \mathrm{RCB}$	RCB Protection Release Trip Point	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUt }}$		50		mV

Continued on the following page...

Electrical Characteristics (Continued)
Unless otherwise noted; $\mathrm{V}_{\mathrm{IN}}=2.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {RCB_HYS }}$	RCB Hysteresis			100		mV
$\mathrm{t}_{\text {RCB }}$	Default RCB Response Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\mathrm{High} /$ Low		2		$\mu \mathrm{s}$
$\mathrm{I}_{\mathrm{RCB}}$	RCB Current	$\mathrm{V}_{\text {ON }}=0 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$,		7		$\mu \mathrm{A}$
$\mathrm{t}_{\text {Hocp }}$	Hard Over-Current Response Time	Moderate Over-Current Condition, $I_{\text {OUT }} \geq I_{\text {LIM }}, V_{\text {OUT }}=0 \mathrm{~V}$		6		$\mu \mathrm{s}$
tocp	Over-Current Response Time	Moderate Over-Current Condition, lout \geq IIIM $\mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {IN }}$		7		$\mu \mathrm{s}$
toc_flag	Over-Current Flag Response Time	When Over-Current Occurs to Flag Pulling LOW		8		ms
TSD	Thermal Shutdown	Shutdown Threshold		150		${ }^{\circ} \mathrm{C}$
		Return from Shutdown		130		
		Hysteresis		20		
Dynamic Characteristics						
toon	Turn-On Delay ${ }^{(6,7)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=2040 \Omega \end{aligned}$		0.67		ms
t_{R}	$V_{\text {Out }}$ Rise Time ${ }^{(6,7)}$			0.69		ms
ton	Turn-On Time ${ }^{(6,8)}$			1.36		ms
$t_{\text {DOFF }}$	Turn-Off Delay ${ }^{(7,6)}$			0.01		ms
t_{F}	Vout Fall Time ${ }^{(7,6)}$			0.22		ms
toff	Turn-Off Time ${ }^{(9,6)}$			0.23		ms
$\mathrm{t}_{\text {DON }}$	Turn-On Delay ${ }^{(7,10)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3.8 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=- \\ & 40 \text { to } 85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=634 \Omega \end{aligned}$		0.65	0.78	ms
t_{R}	$V_{\text {out }}$ Rise Time ${ }^{(7,10)}$			0.65	0.82	ms
ton	Turn-On Time ${ }^{(8,10)}$			1.3	1.6	ms
$t_{\text {DOFF }}$	Turn-Off Delay ${ }^{(7,10)}$			4	10	$\mu \mathrm{s}$
t_{F}	Vout Fall Time ${ }^{(7,10)}$			76	120	$\mu \mathrm{s}$
toff	Turn-Off Time ${ }^{(9,10)}$			80	130	$\mu \mathrm{s}$

Notes:

5. Characterization based on 1% tolerance resistor.
6. This parameter is guaranteed by design and characterization; not production tested.
7. $t_{\text {DoN }} / t_{\text {DOFF }} / t_{R} / t_{\text {F }}$ are defined in Figure 5 below.
8. $\mathrm{t}_{\mathrm{ON}}=\mathrm{t}_{\mathrm{R}}+\mathrm{t}_{\text {DON }}$.
9. $\mathrm{t}_{\mathrm{FFF}}=\mathrm{t}_{\mathrm{F}}+\mathrm{t}_{\text {DOFF }}$.
10. This parameter is guaranteed by design.

Timing Diagram

Figure 5. Timing Diagram

Operation and Application Description

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into discharge load capacitor; a capacitor must be placed in between the V_{IN} and GND pins. A high-value capacitor on C_{IN} can be used to reduce the voltage drop in highcurrent applications.

Output Capacitor

An output capacitor should be placed between the $\mathrm{V}_{\text {out }}$ and GND pins. This capacitor prevents parasitic board inductance from forcing Vout below GND when the switch is on. This capacitor also prevents reverse inrush current from creating a voltage spike that could damage the device in the case of a Vout short.

Fault Reporting

Upon the detection of an over-current, OC_FLAGB signal the fault by activating LOW.

Current Limiting

The current limit ensures that the current through the switch does not exceed the maximum set value, while not limiting the minimum value. The current at which the part's limit is adjustable through the selection of the external resistor connected to the ISET pin. Information for selecting the resistor is found in the section below. The device acts as a constant-current source when the load draws more than the maximum value set by the device until thermal shutdown occurs. The device recovers if the die temperature drops below the threshold temperature.

Under-Voltage Lockout (UVLO)

The under-voltage lockout turns the switch off if the input voltage drops below the lockout threshold. With the ON pin active, the input voltage rising above the UVLO threshold releases the lockout and enables the switch.

True Reverse-Current Blocking

The true reverse-current blocking feature protects the input source against current flow from output to input regardless of whether the load switch is on or off.

Thermal Shutdown

The thermal shutdown protects the die from internally or externally generated excessive temperature. During an over-temperature condition, the switch is turned off. The switch automatically turns on again if the temperature of the die drops below the threshold temperature

Setting Current Limit

The current limit is set with an external resistor connected between the $\mathrm{I}_{\text {SET }}$ and GND pins. The resistor is selected using Table 1. Resistor tolerance of 1% or less is recommended.

Table 1. Current Limit Settings by $\mathbf{R}_{\mathrm{SET}}{ }^{(11)}$

$\mathbf{R}_{\text {SET }} \boldsymbol{\Omega}$	Min. Current Limit (mA)	Typ. Current Limit (mA)	Max. Current Limit (mA)
528	1800	2000	2200
604	1570	1750	1920
680	1350	1500	1650
866	1125	1250	1375
1070	900	1000	1100
1200	810	900	990
1330	720	800	880
1500	630	700	770
1740	540	600	660
2100	450	500	550
2320	405	450	495
2550	360	400	440
2940	315	350	385
3400	370	300	330
4020	225	250	275
4990	180	200	220
6490	135	150	165
9530	90	100	110
20000	42	50	58
	180		

Note:

11. Table values based on 1% tolerance resistor.
12. For 50 mA setting, tolerance is $\pm 15 \%$ with 1%.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance may have on normal and short-circuit operation. Using wide traces for VIN, VOUT, GND helps minimize parasitic electrical effects along with minimizing the case-toambient thermal impedance.

Typical Performance Characteristics

Figure 6. ton Response

Figure 8. OC_FLAGB Response Time (Toggle RLoad from High to Low Resistance)

Figure 10. tocp Response Time

Figure 7. OVP Response (Increase V VOt to OVP Trip Point)

Figure 9. toff Response

REVISIONS			
REV	DESCRIPTION	DATE	BY/SITE
1	INITIAL DRAWING RELEASE.	$2-15-2008$	L. ENGLAND/FSME
2	Updated land pattern to individual solder mask openings. Removed solder alloy note. Other misc updates for standardization.	$4-9-2010$	L. ENGLAND/FSME

TOP VIEW

LAND PATTERN RECOMMENDATION (NSMD PAD TYPE)

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASMEY14.5M, 1994.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS ± 39 MICRONS ($547-625$ MICRONS).
FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILNAME: MKT-UC009ABrev2

APPROVALS	DATE	FAIROHILD SEMICDNDUETIRM				
${ }^{\text {DRAMW }}$ L. England	4-9-10					
${ }^{\text {Difto ctik }} \mathrm{H}$. Allen	4-9-10	9 BALL WLCSP, 3X3 ARRAY 0.4MM PITCH, 250UM BALL				
OJEC		${ }^{\text {SCALE }}$	SIzE	DRAWMG num		
-		N/A	N/A	MKT	09AB	2
$\xrightarrow{\text { Noch }}$		DO NO	SCALE	DRAWING	SHEET	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG AP22953CW12-7 MAX14919AUP+T MAX14919ATP+ KTS1697AEOAB-TR TCK207AN,LF BD2227G-LBTR TCK126BG,LF XC8111AAA010R-G MPQ5072GG-AEC1-P TCK128BG,LF XC8110AA018R-G XC8110AA010R-G XC8111AA018R-G MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

