

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FPF3003
 IntelliMAX ${ }^{\text {TM }}$ Full Functional Input Power Path Management Switch for Dual－Battery Portable System

Features

－ 2.3 V to 5.5 V Input Voltage Operating Range
－Low Ron between Battery and Load Maximum $50 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$
－Low Ron between Charger and Battery Maximum $125 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}$
－Maximum DC Current for Load Switch：2．5A
－Maximum DC Current for Charge Switch： 1.5 A
－Slew Rate Controlled to $30 \mu \mathrm{~s}$ Nominal Rise Time
－Seamless Break－Before－Make Transition
－Quiescent Current：30 $\mu \mathrm{A}$ Typical
－Thermal Shutdown
－Reverse Current Blocking（RCB）between Battery A and Battery B
－RESET Timer Delay：7s Typical
－ESD Protected：
－Human Body Model：$>2.5 \mathrm{kV}$
－Charged Device Model：＞1．5kV
－IEC 61000－4－2 Air Discharge：$>15 \mathrm{kV}$
－IEC 61000－4－2 Contact Discharge：$>8 \mathrm{kV}$
－ 1.6 mm X $1.6 \mathrm{~mm}, 16$－Bump， 0.4 mm Pitch，WLCSP

Applications

－Dual－Battery Cell phone
－Dual－Battery Portable Equipment

Description

The FPF3003 is a single－chip solution for dual－battery power－path switching，including integrated P－channel switches and analog control features．The input voltage range operates from 2.3 V to 5.5 V ．The device selects one of two batteries to provide power to the system， enabling one battery to be charged by the external battery charger．

The FPF3003 has battery voltage monitoring to determine if the battery is under voltage．Special driver and digital circuitry allows the device to switch quickly between battery A and battery B ，which allows hot swapping of battery packs．Maximum current from battery to load per channel is limited to a constant 2．5A and internal thermal shutdown circuits protect the part during fault conditions．

The FPF3003 is available in a $1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ ， 16－bump，Wafer－Level Chip－Scale Package（WLCSP）．

Ordering Information

Part Number	Top Mark	（Charger－Battery） Max．$R_{\text {on }}$ at $4.2 \mathrm{~V}_{\text {IN }}$	（Battery－Load） Max． R_{ON} at $4.2 \mathrm{~V}_{\text {IN }}$	Typical t_{R}	Package
FPF3003UCX	QW	$125 \mathrm{~m} \Omega$	$50 \mathrm{~m} \Omega$	30 ss	16－Bump， 0.4 mm Pitch， $1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ WLCSP

Typical Application Diagram

Figure 1. Typical Application
Functional Block Diagram

Figure 2. Functional Block Diagram

Pin Configuration

Figure 3. Pin Assignments (Top View)

Figure 4. Pin Assignments (Bottom View)

Pin Description

Pin \#	Name	Description
A1	LOBAT	Low Battery A Voltage Input. Connect to the resistive divider to set the trip level for chip-on moment. If LOBAT is less than 0.8V, Vout is connected to BATB.
A2	CHGIN	Charging Input. Charging path input.
A3, A4	BATA	Supply Input. Battery A voltage input.
B1	STAT	Battery Selector Status. Open-drain output. HIGH (Hi-Z) means battery A connects to VOUT. LOW means battery B connects to VOUT.
B2	BATBID	Battery B Indicator. Connect this pin with the ID pin at the battery pack of BATB. HIGH means battery B absent; LOW means battery B present.
B3,B4	VOUT	Switch Output. Connect to system load.
C1	ADPIN	Adapter Input. 5V input for battery charger.
C2	BATAID	Battery A Indicator. Connect this pin with the ID pin at the battery pack of BATA. HIGH means battery A absent; LOW means battery A present.
C3,C4	BATB	Supply Input. Battery B voltage input.
D1	GND	Ground
D2	RESETB	Reset Input. Active LOW. Both system path switches are disconnected from system load.
D3	BATSEL	Battery Selection Input. HIGH means to switch battery B to VOUT; LOW means to switch battery A to VOUT.
D4	CHGSEL	Charge Selection Input. HIGH means to charge battery B: LOW means to charge battery A.

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameters	Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	All Pins To GND		-0.3	6.0	V
Isw	Maximum Continuous Switch Current to Load			2.5	A
	Maximum Continuous Switch Current to Charger			1.5	A
P_{D}	Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.7	W
TSTG	Operating and Storage Junction Temperature		-65	150	${ }^{\circ} \mathrm{C}$
$\Theta_{J A}$	Thermal Resistance, Junction to Ambient (1in. Square Pad of 2oz. Copper)			$72^{(1)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	2.5		kV
		Charged Device Model, JESD22-C101	1.5		
		Air Discharge (BATA, BATB, ADPIN to GND), IEC61000-4-2 System Level	15.0		
		Contact Discharge (BATA, BATB, ADPIN to GND), IEC61000-4-2 System Level	8.0		

Note:

1. Measured using 2S2P JEDEC std. PCB.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
$\mathrm{V}_{\mathbb{N}}$	ADPIN	4.6	5.5	V
	BATA, BATB	2.3	5.5	\vee
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

ADPIN $=4.6$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at ADPIN $=5 \mathrm{~V}, \mathrm{CHGIN}=\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=4.2 \mathrm{~V}$, RESETB $=\mathrm{HIGH}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit
Static Characteristics						
$V_{\text {ADPIN }}$	Adapter Input Voltage		4.6		5.5	V
$V_{\text {ADPIN_TH }}$	ADPIN Threshold	ADPIN Rising		4.5		V
		ADPIN Falling		4.2		
$V_{\text {bata, }}$ $V_{\text {batb }}$	Battery Input Voltage		2.3		5.5	V
I_{Q}	Quiescent Current	$\mathrm{l}_{\text {Out }}=0 \mathrm{~mA}$		30		$\mu \mathrm{A}$
R_{ON}	On Resistance to Load Switch, BATA or BATB to VOUT	$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=5.5 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(2)}$		34		$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=4.2 \mathrm{~V}$, lout $=300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		38	50	
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=3.7 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		43	55	
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(2)}$		62		
	On Resistance to Charger Switch, CHGIN to BATA	$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=5.5 \mathrm{~V}, \mathrm{I}_{\text {CHG }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(2)}$		66		
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=4.2 \mathrm{~V}, \mathrm{I}_{\mathrm{CHG}}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		73	90	
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=3.7 \mathrm{~V}, \mathrm{I}_{\text {CHG }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	95	
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{CHG}}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(2)}$		101		
	On Resistance to Charger Switch, CHGIN to BATB	$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{CHG}}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(2)}$		92		
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=4.2 \mathrm{~V}, \mathrm{I}_{\mathrm{CHG}}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		99	125	
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=3.7 \mathrm{~V}, \mathrm{I}_{\text {CHG }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		105	130	
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{CHG}}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(2)}$		128		
V_{1}	Input Logic HIGH Voltage	$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}-5.5 \mathrm{~V}, \mathrm{CHGSEL},$ BATSEL	0.90			V
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}-5.5 \mathrm{~V}$, RESETB	1.15			
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}-5.5 \mathrm{~V}$, BATAID, BATBID	1.70			
VIL	Input Logic LOW Voltage	$\begin{aligned} & V_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}-5.5 \mathrm{~V}, \mathrm{CHGSEL}, \\ & \text { BATSEL } \end{aligned}$			0.6	V
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}-5.5 \mathrm{~V}$, RESETB			0.8	
		$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}-5.5 \mathrm{~V}$, BATAID, BATBID			0.9	
$V_{\text {Stat_Lo }}$	STAT Logic LOW Voltage	$\mathrm{I}_{\mathrm{SINK}}=1 \mathrm{~mA}$			0.3	V
V Lobat	LOBAT Threshold	$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3 \mathrm{~V}-5.5 \mathrm{~V}$		0.8		V
$t_{\text {lobat }}$	LOBAT De-Glitch Time	$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BAtB }}=2.3 \mathrm{~V}-5.5 \mathrm{~V}$		1.3		ms
TsD	Thermal Shutdown	Shutdown Threshold		150		${ }^{\circ} \mathrm{C}$
		Return from Shutdown		140		
		Hysteresis		10		
VDroop_out	Output Voltage Droop while Battery Switching	$V_{\text {BATA }}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {BATB }}=4.2 \mathrm{~V}$, Switching from $V_{\text {BATA }} \rightarrow V_{\text {BATB }}, R_{L}=100 \Omega$, $C_{\text {out }}=10 \mu \mathrm{~F}$			100	mV

Continued on the following page..

Electrical Characteristics

ADPIN $=4.6$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=2.3$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at ADPIN $=5 \mathrm{~V}, \mathrm{CHGIN}=\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=4.2 \mathrm{~V}$, RESETB $=\mathrm{HIGH}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit
Reverse Current Blocking between $V_{\text {BATA }}$ and $V_{\text {BATB }}$		20		mV		
$V_{\text {T_RCB }}$	RCB Protection Trip Point	$V_{\text {OUT }}-V_{\text {BATA }}$ or $V_{\text {BATB }}$	30	mV		
$V_{\text {R_RCB }}$	RCB Protection Release Trip Point	$V_{\text {BATA }}$ or $V_{\text {BATB }}-V_{\text {OUT }}$		50	mV	
	Hysteresis					

Dynamic Characteristics: See Definitions Below

t_{R}	$V_{\text {Out }}$ Rise Time ${ }^{(2,3,4)}$	$V_{\text {BATA }}=V_{\text {BATB }}=4.2 \mathrm{~V}, R_{L}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$, BATAID=HIGH to LOW, BATBID=HIGH	30	$\mu \mathrm{s}$
$\mathrm{t}_{\text {DON }}$	Turn-On Delay ${ }^{(2,3,4)}$		5	$\mu \mathrm{s}$
ton	Turn-On Time ${ }^{(2,3,4)}$		35	
t_{F}	Vout Fall Time ${ }^{(2,3,5)}$	$\begin{aligned} & V_{\text {BATA }}=V_{\text {BATB }}=4.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{f}, \text { BATAID }=\mathrm{LOW} \text { to HIGH, } \\ & \text { BATBID=HIGH } \end{aligned}$	2.5	ms
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay ${ }^{(2,3,5)}$		0.1	ms
toff	Turn-Off Time ${ }^{(2,3,5)}$		2.6	ms
$t_{\text {DSEL }}$	Selection Delay ${ }^{(2,3)}$	$\mathrm{V}_{\mathrm{BATA}}=\mathrm{V}_{\text {BATB }}=4.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$, CHGSEL or BATSEL=LOW to HIGH	1	ms
$t_{\text {DRST }}$	RESET Timer Delay ${ }^{(2,3)}$	$\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=4.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $C_{L}=10 \mu \mathrm{~F}$, RESETB=Floating to LOW	7	S

Notes:

2. This parameter is guaranteed by design and characterization; not production tested.
3. $t_{\text {DON }} / t_{\text {DOFF }} / t_{R} / t_{F}$ is defined in Figure 5.
4. $t_{O N}=t_{R}+t_{D O N}$.
5. $\mathrm{t}_{\mathrm{OFF}}=\mathrm{t}_{\mathrm{F}}+\mathrm{t}_{\text {DOFF }}$.

Timing Diagram

Figure 5. ON/OFF Behavior ($\mathrm{V}_{\mathrm{BATA}}=4.2 \mathrm{~V}$)

Figure 6. Battery-to-System Path Selection Behavior by BATSEL ($\mathrm{V}_{\mathrm{BATA}}=\mathrm{V}_{\mathrm{BATB}}=4.2 \mathrm{~V}$)

Figure 7. Charging Path Selection Behavior by CHGSEL
(ADPIN=5V, CHGIN=4.2V, $\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=$ Floating with $1 \mu \mathrm{~F}$)

Timing Diagrams (Continued)

Figure 8. Transition from $\mathrm{V}_{\mathrm{BATA}}$ to $\mathrm{V}_{\mathrm{BATB}}$ Behavior by LOBAT ($\mathrm{V}_{\mathrm{BATA}}=\mathrm{V}_{\mathrm{BATB}}=4.2 \mathrm{~V}$)

Figure 9. System Reset Behavior by RESETB ($\mathrm{V}_{\mathrm{BATA}}=\mathrm{V}_{\mathrm{BATB}}=4.2 \mathrm{~V}$)

Typical Characteristics

Figure 10. ADPIN vs. Temperature

Figure 12. Supply Current vs. Supply Voltage

Figure 14. Ron ($\mathrm{V}_{\text {bata }}$ or $\mathrm{V}_{\text {batb }}$ to $\mathrm{V}_{\text {out }}$) vs. Supply Voltage

Figure 11. Supply Current vs. Temperature

Figure 13. $\mathrm{R}_{\mathrm{ON}}\left(\mathrm{V}_{\text {bata }}\right.$ or $\mathrm{V}_{\text {batb }}$ to $\left.\mathrm{V}_{\text {OUT }}\right)$ vs. Temperature

Figure 15. Ron (CHGIN to $\mathrm{V}_{\text {bata }}$) vs. Temperature

Typical Characteristics

Figure 16. $\mathrm{R}_{\mathrm{ON}}\left(\mathrm{CHGIN}\right.$ to $\left.\mathrm{V}_{\mathrm{BATA}}\right)$ vs. Supply Voltage

Figure 17. $\mathrm{R}_{\mathrm{ON}}\left(\mathrm{CHGIN}\right.$ to $\left.\mathrm{V}_{\mathrm{BATB}}\right)$ vs. Temperature

Figure 19. CHGSEL vs. Temperature

Figure 21. BATSEL vs. Temperature

Typical Characteristics

Figure 22. BATSEL vs. Supply Voltage

Figure 24. STAT LOW vs. Temperature

Figure 26. $\quad R C B\left(V_{\text {BATB }}\right.$ and $\left.V_{\text {OUT }}\right)$ vs. Temperature

Figure 23. LOBAT vs. Temperature

Figure 25. $\quad \mathrm{RCB}\left(\mathrm{V}_{\mathrm{BATA}}\right.$ and $\left.\mathrm{V}_{\text {OUT }}\right)$ vs. Temperature

Figure 27. Turn-On Response ($\mathrm{V}_{\mathrm{BATA}}=4.2 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=100 \Omega$)

Typical Characteristics

Figure 28. Turn-Off Response ($\mathrm{V}_{\mathrm{BATA}}=4.2 \mathrm{~V}, \mathrm{C}_{\text {out }}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=100 \Omega$)

Figure 30. Battery Selection by BATSEL $=$ LOW \rightarrow HIGH ($\mathrm{V}_{\text {BATA }}=4 \mathrm{~V}, \mathrm{~V}_{\text {BATB }}=4.2 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=100 \Omega$)

Figure 32. Charge Path Selection by CHGSEL $=$ HIGH \rightarrow LOW ($\mathrm{V}_{\mathrm{chGIN}}=4 \mathrm{~V}$, BATA=BATB=Floating with $1 \mu \mathrm{~F}$)

Figure 29. Battery Selection by BATSEL $=$ HIGH \rightarrow LOW ($V_{\text {BATA }}=4 V, V_{\text {ATB }}=4.2 \mathrm{~V}, C_{\text {OUT }}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=100 \Omega$)

Figure 31. Charge Path Selection by CHGSEL $=$ HIGH \rightarrow LOW ($\mathrm{V}_{\mathrm{CHGIN}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{BATA}}=\mathrm{V}_{\mathrm{BATB}}=$ Floating with $1 \mu \mathrm{~F}$)

Figure 33. Battery Selection by LOBAT $=$ HIGH \rightarrow LOW ($\mathrm{V}_{\text {BATA }}=3.8 \mathrm{~V}, \mathrm{~V}_{\text {BATB }}=4.2 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=100 \Omega$)

Typical Characteristics

Figure 34. System Reset by RESETB: HIGH \rightarrow LOW ($\mathrm{V}_{\text {BATA }}=\mathrm{V}_{\text {BATB }}=4.2 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=100 \Omega$)

Operation and Application Information

The FPF3003 is a low-R R_{ON}, P-channel-based, input-source-selection power management switch for dualbattery systems. The FPF3003 input operating range is from 2.3 V to 5.5 V on BATA and BATB, while ADPIN has a range of 4.6 V to 5.5 V .

The FPF3003 controls the charging path from the charger to the battery with up to 1.5 A and the discharging path from the battery to system load with up to 2.5 A . The system or PMIC selects one of two batteries to provide power and enables one of the batteries to be charged by the external battery charger.

The FPF3003 has $30 \mu \mathrm{~s}$ slew-rate control to reduce inrush current when engaged and thermal shutdown protection for reliable system operation.
The internal circuit is powered from the highest voltage source among BATA, BATB, and ADPIN.

Battery Presence Detection

The FPF3003 monitors whether or not a battery is present via the BATAID and BATBID pins. If any of these pins are LOW; FPF3003 recognizes the battery is present. Each pin is connected with an internal LDO output, so no pull-up resistor is required.

Output Capacitor

During battery source transition, voltage droop depends on output capacitance and load current condition. Advanced break-before-make operation minimizes the droop with minimum capacitance. At least $10 \mu \mathrm{~F}$ is a good starting value in design.

Primary Battery Under-VoItage Set

FPF3003 monitors the primary battery of BATA for under-voltage condition. Once under-voltage condition is confirmed, the system power source changes from BATA to valid BATB automatically.
The under-voltage threshold level can be programmed with 0.8 V of LOBAT and R divider (R1 and R2) as:

$$
\begin{equation*}
\frac{R 1}{R 2}=\frac{B A T A_{-} L O}{0.8}-1 \tag{1}
\end{equation*}
$$

where BATA_LO = Low BATA threshold to set.
If 3.4 V of BATA is desired, $\mathrm{R} 1 / \mathrm{R} 2=3.25$. If R 2 is chosen $1 \mathrm{M} \Omega, R 1$ is $3.25 \mathrm{M} \Omega$. Higher R2 is recommended to reduce leakage current from BATA.

Figure 35. BATA Under-Voltage Level Setting
LOBAT has a 1.3 ms of deglitch time to ensure BATA is in true under-voltage rather than transient battery voltage drop during GSM transmission operation.

Battery Selection

The load path can be controlled by the BATSEL pin. When BATSEL is LOW, the system is powered from BATA. When BATSEL is HIGH, BATB powers the system.

Figure 36 is state diagram showing how the power path from battery to system is determined.

Figure 36. Power Path from Battery to System
The open-drain STAT pin is used to determine which battery powers the system. STAT becomes LOW if BATB is connected to the system. STAT is HIGH (HI-Z) if BATA is connected.

Battery Charging Path Selection

The charging path can be controlled by the CHGSEL pin. When CHGSEL is LOW, BATA can be charged from the charger. When CHGSEL is HIGH, BATB can be charged from the charger.

Figure 37. Battery Charging Path

System RESET

The RESETB pin allows the system to be turned off without detaching the battery pack. It has typical 7s delay to avoid transient abnormal signal.

Board Layout

For best performance, all power traces (BATA, BATB, CHGIN, ADPIN, and VOUT) should be as short as possible to minimize the parasitic electrical effects and the case-to-ambient thermal impedance. The output capacitor should be placed close to the device to minimize parasitic trace inductance.

Packaging Information

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS ± 39 MICRONS (547-625 MICRONS).
F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILNAME: MKT-UC016AArev2.

Figure 38. 1.6mmx1.6mm WLCSP, 16-Bumps 0.4 mm Pitch

Product-Specific Dimensions

Product	D	E	X	Y
FPF3003UCX	$1560 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$1560 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$180 \mu \mathrm{~m}$	$180 \mu \mathrm{~m}$

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG AP22953CW12-7 MAX14919AUP+T MAX14919ATP+ KTS1697AEOAB-TR TCK207AN,LF BD2227G-LBTR TCK126BG,LF XC8111AAA010R-G MPQ5072GG-AEC1-P TCK128BG,LF XC8110AA018R-G XC8110AA010R-G XC8111AA018R-G MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

