

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FPF3040

IntelliMAX ${ }^{\text {TM }} 18$ V-Rated Dual Input Single Output Power-Source-Selector Switch

Features

- Dual-Input, Single-Output Load Switch
- Input Supply Operating Range:
- 4~10.5 V at V_{IN}
- $4 \sim 6.5 \mathrm{~V}$ at $\mathrm{V}_{\text {BUS }}$
- Typical Ron:
- $\quad 95 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{iN}}=5 \mathrm{~V}$
- $\quad 70 \mathrm{~m} \Omega$ at $\mathrm{V}_{\text {Bus }}=5 \mathrm{~V}$
- Bi-Directional Switch for V_{IN} and $\mathrm{V}_{\text {BUS }}$
- Slew Rate Controlled:
- $50 \mu \mathrm{~s}$ at $\mathrm{V}_{\text {IN }}$ for $<4.7 \mu \mathrm{~F}$ Cout
- $\quad 90 \mu \mathrm{~s}$ at $\mathrm{V}_{\text {bus }}$ for $<4.7 \mu \mathrm{~F}$ Cout
- Maximum $I_{\text {Sw }}: 2$ A Per Channel
- Break-Before-Make Transition
- Under-Voltage Lockout (UVLO)
- Over-Voltage Lockout (OVLO)
- Thermal Shutdown
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:
- Human Body Model: >3 kV
- Charged Device Model: $>1.5 \mathrm{kV}$
- IEC 61000-4-2 Air Discharge: >15 kV
- IEC61000-4-2 Contact Discharge: >8 kV

Description

The FPF3040 is a 18 V-rated Dual-Input Single-Output (DISO) load switch consisting of two channels of slew-rate-controlled, low-on-resistance, N-channel MOSFET switches with protection features. The slew-ratecontrolled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on the input power rails. The input voltage range operates from 4 V to 6.5 V at $\mathrm{V}_{\text {Bus }}$ and from 4 V to 10.5 V at V_{IN} to align with the needs of low-voltage portable device power rails.
$\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {BUS }}$ have the over-voltage protection functionality of typical 12 V and 7.5 V , respectively, to avoid unwanted damage to system.
V_{IN} and $\mathrm{V}_{\text {Bus }}$ bi-directional switching allows reverse current from $\mathrm{V}_{\text {out }}$ to $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {bus }}$ for On-The-Go, (OTG) Mode. The switching is controlled by logic input EN and $\mathrm{V}_{\text {In_SEL }}$ is capable of interfacing directly with low-voltage control signal General-Purpose Input / Output (GPIO).

FPF3040 is available in $1.8 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ Wafer-Level Chip-Scale Package (WLCSP), 16-bump, 0.4 mm pitch.

Applications

- Input Power Selection Block Supporting USB and Wireless Charging
- Smartphone / Tablet PC

Ordering Information

Part Number	Top Mark	Channel	Typical Ron per Channel at $5 \mathrm{~V}_{\text {IN }}$	Rise Time (t_{R})	Package
FPF3040UCX	QY	DISO	$95 \mathrm{~m} \Omega$ for $\mathrm{V}_{\text {IN }}$	$50 \mu \mathrm{~s}$ for $\mathrm{V}_{\text {IN }}$	$1.8 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ Wafer-Level Chip-Scale Package (WLCSP), 16-Bump, 0.4 mm Pitch
			$70 \mathrm{~m} \Omega$ for $\mathrm{V}_{\text {BUS }}$	$90 \mu \mathrm{~s}$ for $\mathrm{V}_{\text {BUS }}$	

Application Diagram

Figure 1. Typical Application

Figure 2. Example Circuit for OTG Operation with Low-Voltage GPIO

Block Diagram

Figure 3. Functional Block Diagram

Pin Configuration

Figure 4. Pin Assignment (Top View)

Figure 5. Pin Assignment (Bottom View)

Pin Description

Pin \#	Name	Input / Output	Description
A1, B1, C1	$V_{\text {bus }}$	Input / Output	VBus at USB: Power input / output. bi-directional switch when $\mathrm{V}_{\text {IN_SEL }}=$ LOW.
A4, B4, C4	$\mathrm{V}_{\text {IN }}$	Input / Output	\mathbf{V}_{IN} Supply Input: Power input / output. bi-directional switch when V_{IN} sEL $=$ HIGH.
A2, A3, B3, C3	$\mathrm{V}_{\text {OUT }}$	Input / Output	Switch Output: Power input / output.
C2	EN	Input	Enable: Active HIGH. EN voltage $\geq 2.5 \mathrm{~V}$ can power internal circuit when $\mathrm{V}_{\mathbb{I}}$ and $\mathrm{V}_{\text {BUS }}$ are absent. $1 \mathrm{M} \Omega$ pull-down resistor is included.
D4	Vin_SEL	Input / Output	Supply Selector \& Status: Input power source selection input and status output. This signal is ignored during EN=LOW. Selector input during EN=HIGH: $\text { HIGH = switch } \mathrm{V}_{\text {IN }} \text { to } \mathrm{V}_{\text {OUT }} / \text { LOW }=\text { switch } \mathrm{V}_{\text {Bus }} \text { to } \mathrm{V}_{\text {OUt. }}$ Status output during EN=LOW: $\text { HIGH }=\mathrm{V}_{\text {IN }} \text { is used for } \mathrm{V}_{\text {OUT }} / \text { LOW }=\mathrm{V}_{\text {BUS }} \text { is used for } \mathrm{V}_{\text {OUT. }} .$
D3	DF_IN	Input	Default Supply Selector during EN=LOW: Input. Floating = VBUS connects to Vout. LOW means $\mathrm{V}_{\text {IN }}$ connects to $\mathrm{V}_{\text {Out }}$. This signal is ignored during $\mathrm{EN}=\mathrm{HIGH} .1 \mu \mathrm{~A}$ pull-up current source is included.
B2	Other_VINAVA	Output	Other Supply Input Status: Open-drain output. $\mathrm{HI}-\mathrm{Z}=$ both $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {BUs }}$ are valid. LOW = the other power source is not valid.
D1, D2	GND		Ground

Table 1. Truth Table

EN	$\mathrm{V}_{\text {IN }}>$ UVLO	$V_{\text {Bus }}>$ UVLO	$\mathrm{V}_{\text {IN_SEL }}$	DF_IN	Other_ $\mathrm{V}_{\text {In_AVA }}$	$\mathrm{V}_{\text {OUT }}$	Comment
HIGH	X	X	LOW	X	$\mathrm{HI}-\mathrm{Z}$ if $\mathrm{V}_{\text {IN }}$ \& $\mathrm{V}_{\text {Bus }}>\mathrm{UVLO}$ LOW if $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {Bus }}$ $<$ UVLO	V ${ }_{\text {bus }}$	$\mathrm{V}_{\text {OUt }}$ is selected by Vin_sel Bi-directional channel
HIGH	X	X	HIGH	X	$\mathrm{HI}-\mathrm{Z}$ if $\mathrm{V}_{\text {IN }}$ \& $\mathrm{V}_{\text {bus }}>$ UVLO LOW if $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {Bus }}$ <UVLO	$\mathrm{V}_{\text {IN }}$	
LOW	YES	NO	HIGH	X	LOW	$\mathrm{V}_{\text {IN }}$	Automatic selection to valid input $\mathrm{V}_{\text {IN_SEL }}$ is output.
LOW	NO	YES	LOW	X	LOW	$V_{\text {Bus }}$	
LOW	YES	YES	LOW	Floating	HIGH	$\mathrm{V}_{\text {BuS }}$	$V_{\text {out }}$ is selected by DF_IN $\mathrm{V}_{\text {IN_SEL }}$ is output.
LOW	YES	YES	HIGH	LOW	HIGH	VIN	
LOW	NO	NO	X	X	LOW	Floating	OFF

Notes:

1. Internal pull-down at EN.
2. $1 \mu \mathrm{~A}$ pull-up current source at DF_IN.

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters			Min.	Max.	Unit
$\mathrm{V}_{\text {PIN }}$	$\mathrm{V}_{\text {IN }}$, $\mathrm{V}_{\text {Bus }}$ to GND	Continuous		-1.4		V
		Pulsed, 100 ms	aximum Non-Repetitive	-2.0	18	
	$\mathrm{V}_{\text {Out }}$ to GND ${ }^{(3)}$			-0.3	16.0	
	EN, DF_IN, $\mathrm{V}_{\text {IN_SEL }}$, Other_V $\mathrm{V}_{\text {In_ava }}$ to GND			-0.3	6.0	
Isw	Maximum Continuous Switch Current per Channel				2	A
tPD	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				2.25	W
T_{J}	Operating Junction Temperature			-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Junction Temperature			-65	+150	${ }^{\circ} \mathrm{C}$
Θ_{JA}	Thermal Resistance, Junction-to-Ambient (1in. Square Pad of 2 oz. Copper)				$55^{(4)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Mod	del, JESD22-A114	3		kV
		Charged Device Model, JESD22-C101		1.5		
		IEC61000-4-2	Air Discharge ($\mathrm{V}_{\text {IN, }}$, $\mathrm{V}_{\text {Bus }}$ to GND)	15		
		System Level ${ }^{(5)}$	Contact Discharge ($\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {BUS }}$ to GND)	8		

Notes:

3. If external voltage of more than 10.5 V is applied to $\mathrm{V}_{\text {out }}$, the slew rate should be less than $1 \mathrm{~V} / \mathrm{ms}$ from 10.5 V .
4. Measured using 2S2P JEDEC standard PCB.
5. System level ESD can be guaranteed by design.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
$\mathrm{V}_{\mathrm{PIN}}$	$\mathrm{V}_{\mathbb{I N}}$	4.0	10.5	V
	$\mathrm{~V}_{\text {BUS }}$	4.0	6.5	
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\mathbb{I N}}=4$ to $10.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BUS}}=4$ to $6.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{BUS}}=5 \mathrm{~V}$, $\mathrm{EN}=\mathrm{HIGH}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit
Basic Operation						
$V_{\text {IN }}$	Input Voltage		4.0		10.5	V
$\mathrm{V}_{\text {BUS }}$			4.0		6.5	V
1 Q	Quiescent Current	$\begin{aligned} & \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{EN}=\mathrm{HIGH}, \\ & \mathrm{~V}_{\text {IN }} \text { or } \mathrm{V}_{\text {BUS }}=5 \mathrm{~V} \end{aligned}$		55	120	$\mu \mathrm{A}$
		lout $=0 \mathrm{~mA}, \mathrm{EN}=5 \mathrm{~V}$, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {BUS }}=G N D$		33	70	$\mu \mathrm{A}$
RON	On Resistance for $\mathrm{V}_{\mathbb{I}}$	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$, l lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		95		$m \Omega$
		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, l lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		95	150	
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}^{(6)} \end{aligned}$			200	
	On Resistance for $\mathrm{V}_{\text {bus }}$	$\mathrm{V}_{\text {BUs }}=6 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70		$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {BUS }}=5 \mathrm{~V}$, l lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70	100	
		$\begin{aligned} & \mathrm{V}_{\text {BUS }}=5 \mathrm{~V}, \text { lout }=200 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}^{(6)} \end{aligned}$			140	
V_{IH}	Input Logic High Voltage	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V} \sim 10.5 \mathrm{~V}$, $\mathrm{V}_{\text {BUS }}=4 \mathrm{~V} \sim 6.5 \mathrm{~V}$	1.15			V
$\mathrm{V}_{\text {IL }}$	Input Logic Low Voltage	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V} \sim 10.5 \mathrm{~V}$, $\mathrm{V}_{\text {BUS }}=4 \mathrm{~V} \sim 6.5 \mathrm{~V}$			0.52	V
$\mathrm{V}_{\text {EN(OTG) }}$	EN Voltage in OTG Mode ${ }^{(6)}$	$\mathrm{V}_{\text {IN }}$ \& $\mathrm{V}_{\text {BUS }}=$ Float or $\mathrm{V}_{\text {IN }}$ \& $\mathrm{V}_{\text {BUS }}<\mathrm{V}_{\text {UVLO }}$	2.5			V
REN_PD	Pull-Down Resistance at EN		707	1000	1360	k Ω
Protection						
$\mathrm{V}_{\text {uvio }}$	Under-Voltage Lockout Threshold	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {Bus }}$ Rising	3.05	3.50	4.00	V
		$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {BUS }}$ Falling	2.55	3.00	3.55	V
Vuvhys	Under-Voltage Lockout Hysteresis			0.5		V
Vovio	Over-Voltage Lockout Threshold	$\mathrm{V}_{\text {IN }}$ Rising Threshold	10.85	12.00	13.45	V
		$\mathrm{V}_{\text {IN }}$ Falling Threshold		11.5		V
		$\mathrm{V}_{\text {Bus }}$ Rising Threshold	6.52	7.50	8.32	V
		V ${ }_{\text {Bus }}$ Falling Threshold		7		V
VovhYs	Over-Voltage Lockout Hysteresis	$\mathrm{V}_{\text {IN }}$		0.5		V
		$\mathrm{V}_{\text {BUS }}$		0.5		V
TSDN	Thermal Shutdown Threshold			150		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SDNHYS }}$	Thermal Shutdown Hysteresis			20		${ }^{\circ} \mathrm{C}$

Reverse Current Blocking

$\mathrm{I}_{\text {RCB }}$	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {BUS }}$ Current During RCB	$\mathrm{V}_{\text {OUT }}=8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}$ or $\mathrm{V}_{\text {BUS }}=\mathrm{GND}$			30

Dynamic Characteristics

t_{R}	Vout Rise Time, $\mathrm{V}_{\text {Bus }}{ }^{(6,7)}$	$\begin{aligned} & V_{I N}=V_{B U S}=5 \vee, R_{L}=150 \Omega, C_{L}=4.7 \mu \mathrm{~F}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		90	$\mu \mathrm{s}$
	$\mathrm{V}_{\text {OUt }}$ Rise Time, $\mathrm{V}_{\text {IN }}{ }^{(6,7)}$			50	
$t_{\text {F }}$	$V_{\text {OUt }}$ Fall Time ${ }^{(6,7)}$			1.4	ms
$\mathrm{t}_{\text {tran }}$	Transition Delay ${ }^{(6,7)}$		50	100	ms
tsD	Selection Delay ${ }^{(6,7)}$			50	$\mu \mathrm{S}$

Notes:

6. This parameter is guaranteed by characterization and/or design; not production tested.
7. $\mathrm{tsp}_{\mathrm{s}} / \mathrm{t}_{\text {tran }} / \mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ are defined in Figure 6.

Figure 6. Transition Delay ($\left.\mathrm{V}_{\mathrm{IN}_{\mathrm{N}}}=\mathrm{V}_{\mathrm{BUS}}=5 \mathrm{~V}\right)$

Typical Characteristics

Figure 7. V_{IN} Quiescent Current $\left(\mathrm{I}_{\mathrm{q}}\right)$ vs. Temperature

Figure 9. V_{IN} Quiescent Current vs. Supply Voltage

Figure $11 . \mathrm{V}_{\mathrm{IN}}$ On Resistance ($\mathrm{m} \Omega$) vs. Temperature

Figure 8. $\mathrm{V}_{\text {Bus }}$ Quiescent Current $\left(\mathrm{I}_{\mathrm{q}}\right)$ vs. Temperature

Figure 10. $\mathrm{V}_{\text {Bus }}$ Quiescent Current vs. Supply Voltage

Figure 12. Vbus On Resistance (m Ω) vs. Temperature

Figure 13. V_{IN} On Resistance (m m) vs. Supply Voltage Figure 14. V_{Bu} On Resistance ($\mathrm{m} \Omega$) vs. Supply Voltage

Typical Characteristics (Continued)

Figure 15. V_{I} _SEL Input Logic High \& Low Voltage vs. Temperature

Figure 17.DF_IN Logic High \& Low Voltage vs. Temperature

Figure 19.VBus_vulvo vs. Temperature

Figure 21. VBus_vovlo vs. Temperature

Figure 16.EN Input Logic High \& Low Voltage vs. Temperature

Figure 18. Vin_vulvo vs. Temperature

Figure 20. $\mathbf{V I N}_{\text {In_vovlo }}$ vs. Temperature

Figure 22. VOut t_{R} vs. Temperature

Typical Characteristics (Continued)

Figure 23. $\mathrm{V}_{\text {out }} \mathrm{t}_{\mathrm{F}}$ vs. Temperature

Figure 25. Power Source Transition ($\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {bus }}=5 \mathrm{~V}$, EN=HIGH, $\mathrm{V}_{\text {IN_SEL }}$ SEL=LOW \rightarrow HIGH \rightarrow LOW, $C_{\text {out }}=4.7 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=150 \Omega$)

Figure 27. $\mathrm{V}_{\text {bus }}$ On Response (VBus=GND $\rightarrow 5 \mathrm{~V}$, $\mathrm{V}_{\text {IN }}=\mathrm{EN}=\mathrm{GND}, \mathrm{C}_{\text {out }}=4.7 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=150 \Omega$)

Figure 29. V_{IN} Over-Voltage Protection Response ($\mathrm{V}_{\text {IN }}=5 \mathrm{~V} \rightarrow 15 \mathrm{~V}, \mathrm{~V}_{\text {Bus }}=5 \mathrm{~V}$, EN= $\mathrm{V}_{\text {IN_S }}$ SEL=HIGH, Cout $_{\text {out }} .7 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=150 \Omega$)

Figure 24. $\mathrm{t}_{\text {tran }} \mathrm{vs}$. Temperature

Figure 26. $\mathrm{V}_{\text {IN }}$ On Response ($\mathrm{V}_{\mathbb{I N}}=\mathrm{GND} \rightarrow 5 \mathrm{~V}$, V $_{\text {bus }}=E N=G N D, C_{\text {out }}=4.7 \mu F$, RL= $_{\text {L }} 50$)

Figure 28.Off Response ($\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {bus }}=5 \mathrm{~V}$, EN=HIGH, $\mathrm{V}_{\text {IN_S }}$ SEL=LO \rightarrow HIGH or HIGH \rightarrow LOW, Cout $=4.7 \mu \mathrm{~F}$, $\mathrm{R}_{\mathrm{L}}=150 \Omega$)

Figure 30. $\mathrm{V}_{\text {bus }}$ Over-Voltage Protection Response
($\mathrm{V}_{\text {BUS }}=5 \mathrm{~V} \rightarrow 15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$, EN=HIGH,
$\mathrm{V}_{\text {IN_S }}$ SEL=LOW, Соит=4.7 $\mu \mathrm{F}, \mathrm{R}_{\mathrm{L}=150 \Omega \text {) }}$

Operation and Application Information

The FPF3040 is a $18 \mathrm{~V}, 2$ A-rated, Dual-Input SingleOutput (DISO) load switch with slew-rate-controlled, low-on-resistance, based-on-N-channel MOSFET. The input operating range is from 4 V to 6.5 V at $\mathrm{V}_{\text {Bus }}$ and from 4 V to 10.5 V at $\mathrm{V}_{\mathbb{I}}$. The internal circuitry is powered from the highest voltage source among V_{IN}, $V_{b u s, ~ a n d ~} V_{\text {EN }}$.

Input Power Source Selection

Input power source can be selected by $\mathrm{V}_{\text {IN_sel }}$ and DF_IN, respectively, depending on EN state. When EN is $\overline{H I G H}$, the input source is selected by $\mathrm{V}_{\text {IN_SEL }}$ regardless of DF_IN. If $\mathrm{V}_{\text {In_sel }}$ is LOW, $\mathrm{V}_{\text {bus }}$ is selected. If $\mathrm{V}_{\text {IN_SEL }}$ is $\mathrm{HIGH}^{-} \mathrm{V}_{\text {IN }}$ is selected.
Table 2. Input Power Selection by VIN_SEL

EN	$\mathbf{V}_{\text {IN }}>$ UVLO	$\mathbf{V}_{\text {BUS }}>$ UVLO	V $_{\text {IN_SEL }}$	DF_IN	$\mathbf{V}_{\text {OUT }}$
HIGH	X	X	LOW	X	V $_{\text {BUS }}$
HIGH	X	X	HIGH	X	$\mathrm{V}_{\text {IN }}$

When EN is LOW, the input source is selected by DF_IN and the number of valid input sources. If only one input source is valid, or more than UVLO, the source is selected automatically, regardless of DF_IN, to make a charging path in case the battery is depleted. If both $\mathrm{V}_{\text {BUS }}$ and $\mathrm{V}_{\text {IN }}$ have valid input sources, the input source is selected by DF_IN. If DF_IN is LOW, V_{IN} is selected. If DF_IN is HIGH or floating, $\mathrm{V}_{\text {BUs }}$ is selected. DF_IN is biased HIGH with an internal $1 \mu \mathrm{~A}$ pull-up current source.

Table 3. Input Power Selection by DF_IN

EN	$\mathbf{V}_{\text {IN }}>$ UVLO	$\mathbf{V}_{\text {BUS }}>$ UVLO	$\mathbf{V}_{\text {IN_SEL }}$	DF_IN	$\mathbf{V}_{\text {OUT }}$
LOW	YES	NO	HIGH	X	$\mathrm{~V}_{\text {IN }}$
LOW	NO	YES	LOW	X	$\mathrm{~V}_{\text {BUS }}$
LOW	YES	YES	LOW	Floating	$\mathrm{V}_{\text {BUS }}$
LOW	YES	YES	HIGH	LOW	$\mathrm{V}_{\text {IN }}$
LOW	NO	NO	X	X	Floating

$\mathrm{V}_{\text {IN_SEL }}$ can be the status output to indicate which input power source is used during EN is LOW. If V_{IN} is used, $\mathrm{V}_{\text {In_sel }}$ shows high. If $\mathrm{V}_{\text {bus }}$ is used, $\mathrm{V}_{\text {In_sel }}$ shows LOW. The voltage level of HIGH signal is 5.3 V if any one of
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {BUs }}$ or EN is higher than 5.3 V . The signal is highest voltage among $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{BUS}}$, and V_{EN} if none of them is higher than 5.3 V .

EN Voltage for Control Logic Power Supply

Internal control logic is powered from the highest voltage among $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {Bus }}$, and V_{EN}. If valid $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {bus }}$ higher than UVLO is applied, ON/OFF control by EN should be accomplished with $\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\text {IL }}$. If EN powers the internal control block without valid $\mathrm{V}_{\mathbb{I N}}$ and $\mathrm{V}_{\text {BUS }}$, more than 2.5 V is required on the EN pin to operate properly.

Over-Voltage Protection (OVP)

FPF3040 has over-voltage protection at both $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {BUS }}$. If V_{IN} or $\mathrm{V}_{\text {BUS }}$ is higher than 12 V or 7.5 V , respectively, the power switch is off until input voltage is lower than the over-voltage trip level by hysteresis voltage of 0.5 V .

Reverse Power Supply for OTG

FPF3040 has a bi-directional switch so reverse power is allowed for On-The-Go (OTG) operation. Even if both $\mathrm{V}_{\mathbb{I N}}$ and $\mathrm{V}_{\text {Bus }}$ are not available, reverse power can be also supported if internal control circuitry is powered by EN.

Reverse-Current Blocking

FPF3040 supports reverse-current blocking during EN LOW and an unselected channel.

Thermal Shutdown

During FPF3040 thermal shutdown, the power switch is turned off if junction temperature reaches over $150^{\circ} \mathrm{C}$ to avoid damage.

Wireless Charging System

FPF3040 can be used for an input power selector supporting Travel Adaptor (TA) and Wireless Charging (WC) with a single-input-based battery charger or Power Management IC (PMIC), including a charging block as shown in Figure 31. The system can recognize an input power source change between 5 V TA and 5 V WC without detection circuitry because FPF3040 has a 100 ms transition delay. OTG Mode can be supported without an additional power path, such as a MOSFET.

Figure 31.Block Diagram of Input Power Selector for Wireless Charging System

REVISIONS			
REV	DESCRIPTION	DATE	APP'D/SITE
1	Initial drawing release.	$3-31-08$	L. England
2	Changed land pad solder mask to individual pad openings. Other general updates for drawing consistency.	$3-31-08$	L. England / FSME

TOP VIEW

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

NOTES:

A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS ± 39 MICRONS (547-625 MICRONS).
命. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILNAME: MKT-UC016AArev2.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG AP22953CW12-7 MAX14919AUP+T MAX14919ATP+ KTS1697AEOAB-TR TCK207AN,LF BD2227G-LBTR TCK126BG,LF XC8111AAA010R-G MPQ5072GG-AEC1-P TCK128BG,LF XC8110AA018R-G XC8110AA010R-G XC8111AA018R-G MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

