

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FPF3042

IntelliMAX ${ }^{\text {TM }} 18$ V-Rated, Dual-Input, Single-Output, Power-Source-Selector Switch

Features

- Dual-Input, Single-Output Load Switch (DISO)
- Input Supply Operating Range:
- 4.0 V~12.4 V at Vin
- 4.0 V~12.4 V at Vbus
- Typical Ron:
- $\quad 95 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$
- $70 \mathrm{~m} \Omega$ at $\mathrm{V}_{\text {bus }}=5 \mathrm{~V}$
- Bidirectional Switch for Vin and VBus
- Slew Rate Controlled:
- $\quad 50 \mu \mathrm{~s}$ at Vin for $<4.7 \mu \mathrm{~F}$ Cout
- $\quad 90 \mu \mathrm{~s}$ at $\mathrm{V}_{\text {bus }}$ for $<4.7 \mu \mathrm{~F}$ Cout
- Maximum Isw: 2.7 A per Channel
- Break-Before-Make Transition
- Under-Voltage Lockout (UVLO)
- Over-Voltage Lockout (OVLO)
- Thermal Shutdown
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:
- Human Body Model: >3 kV
- Charged Device Model: $>1.5 \mathrm{kV}$
- IEC 61000-4-2 Air Discharge: >15 kV
- IEC61000-4-2 Contact Discharge: >8 kV

Description

The FPF3042 is an 18 V-rated Dual-Input Single-Output (DISO) load switch consisting of two channels of slew-rate-controlled, low-on-resistance, N-channel MOSFET switches with protection features. The slew-ratecontrolled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on the input power rails. The input voltage range operates from 4.0 V to 12.4 V at both $\mathrm{V}_{\text {bus }}$ and $\mathrm{V}_{\text {IN }}$ to align with the needs of high-voltage portable device power rails.
Both V_{IN} and $\mathrm{V}_{\text {Bus }}$ have the over-voltage protection of 14 V (typical) to avoid damage to the system.

VIn and $V_{b u s ~ b i d i r e c t i o n a l ~ s w i t c h i n g ~ a l l o w s ~ r e v e r s e ~}^{\text {a }}$ current from Vout to Vin or Vbus for On-The-Go, (OTG) Mode. The switching is controlled by logic input EN and VIn_sel is capable of interfacing directly with low-voltage control signal General-Purpose Input / Output (GPIO).

FPF3042 is available in $1.76 \mathrm{~mm} \times 1.96 \mathrm{~mm}$ WaferLevel Chip-Scale Package (WLCSP), 16-bump, 0.4 mm pitch.

Applications

- Input Power-Selection Block Supporting USB and Wireless Charging
- Smart Phone / Tablet PC

Ordering Information

Part Number	Top Mark	Channel	Typical Ron per Channel at $5 \mathrm{~V}_{\mathrm{IN}}$	Rise Time (t_{R})	Package
FPF3042UCX	TR	DISO	$95 \mathrm{~m} \Omega$ for VIN	$50 \mu \mathrm{~s}$ for $\mathrm{V}_{1 /}$	16-Bump, $1.76 \mathrm{~mm} \times 1.96 \mathrm{~mm}$, Wafer-Level Chip-Scale Package (WLCSP), 0.4 mm Pitch
			$70 \mathrm{~m} \Omega$ for $V_{\text {bus }}$	$90 \mu \mathrm{~s}$ for $\mathrm{V}_{\text {bus }}$	

Application Diagram

Figure 1. Typical Application

Figure 2. Example Circuit for OTG Operation with Low-Voltage GPIO

Block Diagram

Figure 3. Functional Block Diagram

Pin Configuration

Top View
Figure 4. Pin Assignment (Top View)

Figure 5. Pin Assignment (Bottom View)

Pin Description

Pin \#	Name	Input / Output	Description
A1, B1, C1	Vbus	Input / Output	$V_{\text {bus }}$ at USB: Power input / output; bi-directional switch when VIN_SEL = LOW.
A4, B4, C4	Vin	Input / Output	Vin Supply Input: Power input / output; bi-directional switch when VIN_SEL = HIGH.
A2, A3, B3, C3	Vout	Input / Output	Switch Output: Power input / output
C2	EN	Input	Enable: Active HIGH; EN voltage $\geq 2.5 \mathrm{~V}$ can power internal circuit when V_{IN} and $\mathrm{V}_{\text {Bus }}$ are absent. $1 \mathrm{M} \Omega$ pull-down resistor is included.
D4	VIn_sEL	Input / Output	Supply Selector \& Status: Input power source selection input and status output. This signal is ignored during EN=LOW. Selector input during EN=HIGH: HIGH = switch VIN to Vout / LOW = switch VBus to Vout. Status output during EN=LOW: HIGH = VIN is used for Vout / LOW = VBus is used for Vout.
D3	DF_IN	Input	Default Supply Selector during EN=LOW: Floating = Vbus connects to Vout. LOW $=$ Vin connects to Vout. This signal is ignored during EN=HIGH. $1 \mu \mathrm{~A}$ pull-up current source is included.
B2	Other_VINava	Output	Other Supply Input Status: Open-drain output. HIGH-Z = both Vin and Visus are valid. LOW $=$ the other power source is not valid.
D1, D2	GND		Ground

Table 1. Truth Table

EN	$\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {UVLO }}$	$V_{\text {Bus }}>V_{\text {UVLO }}$	Vin_SEL	DF_IN	Other_Vin_Ava	$\mathrm{V}_{\text {OUT }}$	Comment
HIGH	X	X	LOW	X	HI-Z if $\mathrm{V}_{\text {IN }} \& \mathrm{~V}_{\text {Bus }}>\mathrm{V}_{\text {uvLo }}$ LOW if Vin or Vbus < Vuvlo	Vbus	Vout is selected by VIn_sel Bidirectional channel
HIGH	X	X	HIGH	X	HI-Z if $\mathrm{V}_{\text {In }} \& \mathrm{~V}_{\text {bus }}>\mathrm{V}_{\text {uvlo }}$ LOW if $\mathrm{V}_{\text {In }}$ or $\mathrm{V}_{\text {bus }}<\mathrm{V}_{\text {uvlo }}$	Vin	
LOW	YES	NO	HIGH	X	LOW	VIN	Automatic selection to valid input VIN_seL is output.
LOW	NO	YES	LOW	X	LOW	Vbus	
LOW	YES	YES	LOW	Floating	HIGH-Z	VBus	$V_{\text {Out }}$ is selected by DF_IN VIN seL is output.
LOW	YES	YES	HIGH	LOW	HIGH-Z	Vin	
LOW	NO	NO	NO	X	Floating	Floating	OFF

Notes:

1. Internal pull-down at EN.
2. $1 \mu \mathrm{~A}$ pull-up current source at DF_IN.

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters			Min.	Max.	Unit
VPIN	Vin, Vbus to GND	Continuous		-1.4		V
		Pulsed, 100 ms Maximum Non-	epetitive	-2.0		
	Vout to GND 3)			-0.3	16.0	
	EN, DF_IN, Vin_sel, Other_Vin_ava to GND			-0.3	6.0	
Isw	Maximum Continuous Switch Current per Channel		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.70	A
			$\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$		2.70	
			$\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$		2.50	
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		2.25	
tpd	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				2.25	W
TJ	Operating Junction Temperature			-40	+150	${ }^{\circ} \mathrm{C}$
Tsta	Storage Junction Temperature			-65	+150	${ }^{\circ} \mathrm{C}$
өJA	Thermal Resistance, Junction-to-Ambient (1in. Square Pad of 2 oz. Copper)				55(4)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, ANSI/ESD	/JEDEC JS-001-2012	3.0		kV
		Charged Device Model, JESD2	C101	1.5		
		IEC61000-4-2 System Level(5)	Air Discharge (Vin, Vbus to GND)	15.0		
			Contact Discharge ($\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {bus }}$ to GND)	8.0		

Notes:

3. If an external voltage of more than 13 V is applied to Vout, the slew rate should be $<1 \mathrm{~V} / \mathrm{ms}$ from 13 V .
4. Measured using 2S2P JEDEC standard PCB.
5. System-level ESD can be guaranteed by design.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
$\mathrm{V}_{\mathrm{PIN}}$	$\mathrm{V}_{\text {IN }}$	4.0	12.4	V
	$\mathrm{~V}_{\mathrm{BUS}}$	4.0	12.4	
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\text {IN }}=4$ to 12.4 V , $\mathrm{V}_{\mathrm{Bu}}=4$ to $12.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}=-40}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{Bu}}=5 \mathrm{~V}$, $\mathrm{EN}=\mathrm{HIGH}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit
VIN	Input Voltage from Vin		4.0		12.4	V
Vbus	Input Voltage from Vbus		4.0		12.4	V
lQ	Quiescent Current	lout $=0 \mathrm{~mA}, \mathrm{EN}=\mathrm{HIGH}, \mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {bus }}=5 \mathrm{~V}$		55	120	$\mu \mathrm{A}$
		lout $=0 \mathrm{~mA}, \mathrm{EN}=5 \mathrm{~V}, \mathrm{~V}$ In and V bus $=\mathrm{GND}$		33	70	$\mu \mathrm{A}$
Ron	On Resistance for Vin	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		95		$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$, lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		95		
		$\mathrm{V}_{\text {In }}=5 \mathrm{~V}$, lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		95	150	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \text { lout }=200 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\left(6^{\prime}\right) \end{aligned}$			200	
	On Resistance for $\mathrm{V}_{\text {bus }}$	V ${ }_{\text {BUS }}=12 \mathrm{~V}$, lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70		$m \Omega$
		$\mathrm{V}_{\text {BUS }}=6 \mathrm{~V}$, lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70		
		$\mathrm{V}_{\text {BUS }}=5 \mathrm{~V}$, lout $=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70	100	
		$\begin{aligned} & \mathrm{V}_{\text {BUS }}=5 \mathrm{~V}, \text { lout }=200 \mathrm{~mA}, \\ & \left.\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}^{(} 6^{\prime}\right) \end{aligned}$			140	
$\mathrm{V}_{1 \text { H }}$	Input Logic High Voltage	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {Bus }}=4.0 \mathrm{~V} \sim 12.4 \mathrm{~V}$	1.15			V
$\mathrm{V}_{\text {IL }}$	Input Logic Low Voltage	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {bus }}=4.0 \mathrm{~V} \sim 12.4 \mathrm{~V}$			0.52	V
$\mathrm{V}_{\text {EN(OTG) }}$	EN Voltage in OTG Mode ${ }^{(6)}$	$\mathrm{V}_{\text {IN }}$ \& $\mathrm{V}_{\text {BUS }}=$ Float or $\mathrm{V}_{\text {IN }}$ \& $\mathrm{V}_{\text {BUS }}<\mathrm{V}_{\text {UVLO }}$	2.5			V
Ren_pd	Pull-Down Resistance at EN			1000		k Ω
Protection						
Vuvio	Under-Voltage Lockout Threshold	Vin or Vbus Rising	3.05	3.50	4.00	V
		Vin or Vbus Falling	2.55	3.00	3.55	V
VuvhYs	Under-Voltage Lockout Hysteresis			0.5		V
Vovio	Over-Voltage Lockout Threshold	VIn Rising Threshold	12.9	14.0	15.0	V
		VIN Falling Threshold	12.4	13.5	14.5	V
		V ${ }^{\text {bus Rising Threshold }}$	12.9	14.0	15.0	V
		V ${ }_{\text {Bus }}$ Falling Threshold	12.4	13.5	14.5	V
Vovhys	Over-Voltage Lockout Hysteresis	VIN		0.5		V
		$V_{\text {BUS }}$		0.5		V
Tsdn	Thermal Shutdown Threshold			150		${ }^{\circ} \mathrm{C}$
Tsdnhys	Thermal Shutdown Hysteresis			20		${ }^{\circ} \mathrm{C}$
Reverse Current Blocking (RCB)						
IRCB	$\mathrm{V}_{\text {IN }}$ or V ${ }_{\text {bus }}$ Current During RCB	Vout $=8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}$ or $\mathrm{V}_{\text {BuS }}=\mathrm{GND}$			30	$\mu \mathrm{A}$
Dynamic Characteristics						
tR	$V_{\text {Out }}$ Rise Time, $\mathrm{V}_{\text {Bus }}(6,7)$	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\text {BUS }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=4.7 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		90		$\mu \mathrm{s}$
	Vout Rise Time, $\mathrm{V}_{\text {IN }}(6,7)$			50		
tF_{F}	Vout Fall Time(6.7)			1.4		ms
ttran	Transition Delay (6,7)		50	100		ms
tsD	Selection Delay (6.7)			50		$\mu \mathrm{s}$

Notes:

6. This parameter is guaranteed by characterization and/or design; not production tested.
7. $\quad \mathrm{tsp}_{\mathrm{d}} / \mathrm{t}_{\text {tran }} / \mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ are defined in Figure 6.

Figure 6. Transition Delay ($\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {BUS }}=5 \mathrm{~V}$)

Typical Characteristics

Figure 7. V_{IN} Quiescent Current (I_{q}) vs. Temperature

Figure 9. Vin Quiescent Current vs. Supply Voltage

Figure 11.Vin On Resistance ($\mathrm{m} \Omega$) vs. Temperature

Figure 8. Vbus Quiescent Current (l_{q}) vs. Temperature

Figure 10.Vbus Quiescent Current vs. Supply Voltage

Figure 12. Vbus On Resistance (m Ω) vs. Temperature

Figure 13. Vin On Resistance (m Ω) vs. Supply Voltage Figure 14.VBus On Resistance (m Ω) vs. Supply Voltage

Typical Characteristics (Continued)

Figure 15. Vin_SEL Input Logic HIGH \& Low Voltage vs. Temperature

Figure 17.DF_IN Logic HIGH \& Low Voltage vs. Temperature

Figure 19.Vbus_vulvo vs. Temperature

Figure 21.Vbus_vovlo vs. Temperature

Figure 16.EN Input Logic HIGH \& Low Voltage vs. Temperature

Figure 18. Vin_vulvo vs. Temperature

Figure 20. Vin_vovzo vs. Temperature

Figure 22. Vout t_{R} vs. Temperature

Typical Characteristics (Continued)

Figure 23. Vout t_{F} vs. Temperature

Figure 25. Power Source Transition ($\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {Bus }}=5 \mathrm{~V}$, EN=HIGH, VIN_SEL=LOW \rightarrow HIGH \rightarrow LOW, Cout=4.7 $\mu \mathrm{F}, \mathrm{RL}=150 \Omega$)

Figure 27. Vbus On Response (Vbus=GND $\rightarrow 5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}}=E N=G N D$, Cout $^{\prime}=4.7 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=150 \Omega$)

Figure 29. Vin Over-Voltage Protection Response ($\mathrm{V}_{\text {In }}=5 \mathrm{~V} \rightarrow 15 \mathrm{~V}$, Vbus=5 V, EN=Vin_SEL=HIGH, Cout=4.7 $\mu \mathrm{F}, \mathrm{R}_{\mathrm{L}}=150 \Omega$)

Figure 24.ttran vs. Temperature

Figure 26. V_{IN} On Response (VIN=GND $\rightarrow 5 \mathrm{~V}$, Vbus=EN=GND, Cout=4.7 $\mu \mathrm{F}, \mathrm{R}_{\mathrm{L}}=150 \Omega$)

Figure 28. Off Response ($\mathrm{V}_{\mathrm{In}}=\mathrm{V}_{\text {bus }}=5 \mathrm{~V}$, EN=HIGH, VIN_SEL=LO \rightarrow HIGH or HIGH \rightarrow LOW, Cout=4.7 $\mu \mathrm{F}$, $R_{L}=150 \Omega$)

Figure 30.Vbus Over-Voltage Protection Response

$$
\left(V_{\text {BUS }}=5 \mathrm{~V} \rightarrow 15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{EN}=\mathrm{HIGH}\right. \text {, }
$$

VIN_SEL=LOW, Cout=4.7 $\mu \mathrm{F}, \mathrm{R}_{\mathrm{L}=150} \Omega$)

Operation and Application Information

The FPF3042 is an 18 V, 2.7 A-rated, Dual-Input SingleOutput (DISO) N-channel MOSFET load switch with slew-rate-controlled and low on resistance. The input operating range is from 4 V to 12.4 V at $\mathrm{V}_{\text {Bus }}$ and at V_{IN}. The internal circuitry is powered from the highest voltage source among $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{BUS}}$, and EN.

Input Power-Source Selection

The input power source can be selected by $\mathrm{V}_{\text {In_sel }}$ and DF_IN, respectively, depending on the EN state. When EN is HIGH, the input source is selected by VIn_sel regardless of DF_IN. If $\mathrm{V}_{\text {In_sel }}$ is LOW, $\mathrm{V}_{\text {bus }}$ is selected. If $\mathrm{V}_{\text {In_sel }}$ is $\mathrm{HIGH}, \mathrm{V}_{\text {IN }}$ is selected.

Table 2. Input Power Selection by VIN_SEL

EN	$\mathbf{V}_{\text {IN }}>$ V $_{\text {UVLO }}$	$\mathbf{V}_{\text {BUS }}>\mathbf{V}_{\text {UVLO }}$	V $_{\text {IN_SEL }}$	DF_IN	$\mathbf{V}_{\text {OUT }}$
HIGH	X	X	LOW	X	V $_{\text {BUS }}$
HIGH	X	X	HIGH	X	VIN

When EN is LOW, the input source is selected by DF_IN and the number of valid input sources. If only one input source is valid (greater than $\mathrm{V}_{\text {uvlo(max) }}$), the source is selected automatically, regardless of DF_IN, to make charging path in case the battery is depleted. If both $\mathrm{V}_{\text {bus }}$ and $\mathrm{V}_{\text {IN }}$ have valid input sources, the input source is selected by DF_IN. If DF_IN is LOW, Vin is selected. If DF_IN is HIGH^{-}or floating, $\mathrm{V}_{\text {bus }}$ is selected. DF_IN is biased HIGH with an internal $1 \mu \mathrm{~A}$ pull-up current source.

Table 3. Input Power Selection by DF_IN

EN	$\mathbf{V}_{\text {IN }}>\mathbf{V}_{\text {UvLO }}$	$\mathbf{V}_{\text {bus }}>\mathbf{V}_{\text {UvLO }}$	$\mathbf{V}_{\text {IN_SEL }}$	DF_IN	$\mathbf{V}_{\text {out }}$
LOW	YES	NO	HIGH	X	$\mathrm{V}_{\text {IN }}$
LOW	NO	YES	LOW	X	$\mathrm{V}_{\text {bus }}$
LOW	YES	YES	LOW	Floating	$\mathrm{V}_{\text {Bus }}$
LOW	YES	YES	HIGH	LOW	$\mathrm{V}_{\text {IN }}$
LOW	NO	NO	X	X	Floating

Vin_sel can be the status output to indicate which input power source is used during EN is LOW. If Vin is used, Vin_sel shows HIGH. If Vbus is used, Vin_sel shows LOW. The voltage level of HIGH signal is 5.3 V if any one of V_{in}, $\mathrm{V}_{\text {bus, }}$ or EN is higher than 5.3 V . The signal
is highest voltage among V_{In}, $\mathrm{V}_{\text {bus, }}$ and EN if none of them is higher than 5.3 V .

EN Voltage for Control Logic Power Supply

Internal control logic is powered from the highest voltage among $\mathrm{V}_{\mathrm{in}}, \mathrm{V}_{\text {bus }}$, and V_{EN}. If valid $\mathrm{V}_{\text {In }}$ or $\mathrm{V}_{\text {bus }}$ higher than UVLO is applied, ON/OFF control by EN should be accomplished with $\mathrm{V}_{\text {IH }} / \mathrm{V}_{\text {IL }}$. If EN powers the internal control block without valid V_{IN} and $\mathrm{V}_{\text {Bus }}$, more than 2.5 V is required on the EN pin to operate properly.

Over-Voltage Protection (OVP)

The FPF3042 includes over-voltage protection at both V_{IN} and $V_{\text {bus. If }} \mathrm{V}_{\mathbb{N}}$ or $\mathrm{V}_{\text {Bus }}$ is higher than 14 V (typical), the power switch is off until input voltage is lower than the over-voltage trip level by a hysteresis voltage of 0.5 V .

Reverse Power Supply for OTG

The bidirectional switch allows reverse power for On-TheGo (OTG) operation. Even if both V_{IN} and $\mathrm{V}_{\text {bus }}$ are unavailable, reverse power can be supported if internal control circuitry is powered by EN.

Reverse-Current Blocking (RCB)

FPF3042 supports reverse-current blocking during EN LOW and an unselected channel.

Thermal Shutdown

During thermal shutdown, the power switch is turned off if junction temperature exceeds $150^{\circ} \mathrm{C}$ to avoid damage.

Wireless Charging System

FPF3042 can be used as an input power selector supporting Travel Adaptor (TA) and Wireless Charging (WC) with a single-input-based battery charger or Power Management IC (PMIC), including a charging block as shown in Figure 31. The system can recognize an input power source change between 5 V TA and 5 V WC without detection circuitry because FPF3042 has a 100 ms transition delay. OTG Mode can be supported without an additional power path, such as a MOSFET.

Figure 31.Input Power Selector for Wireless Charging System

REVISIONS			
REV	DESCRIPTION	DATE	APP'D/SITE
1	Initial drawing release.	$3-31-08$	L. England
2	Changed land pad solder mask to individual pad openings. Other general updates for drawing consistency.	$3-31-08$	L. England / FSME

TOP VIEW

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

NOTES:

A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS ± 39 MICRONS (547-625 MICRONS).
命. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILNAME: MKT-UC016AArev2.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

