

Is Now Part of

ON Semiconductor®

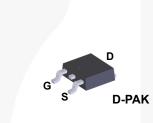
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

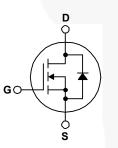
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, weni four in any manner.

SEMICONDUCTOR®

November 2013

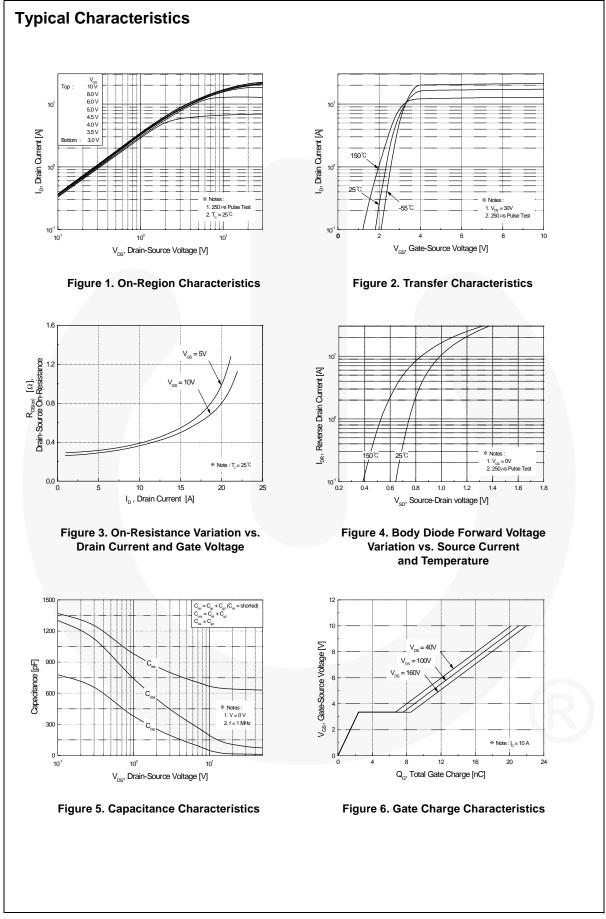

FQD10N20L **N-Channel QFET® MOSFET** 200 V, 7.6 A, 360 mΩ

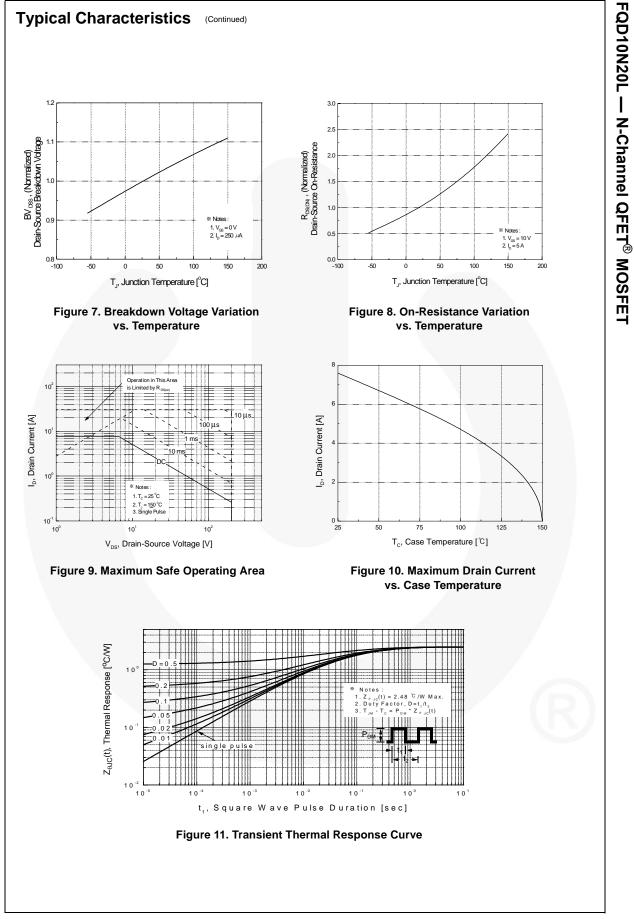

Description

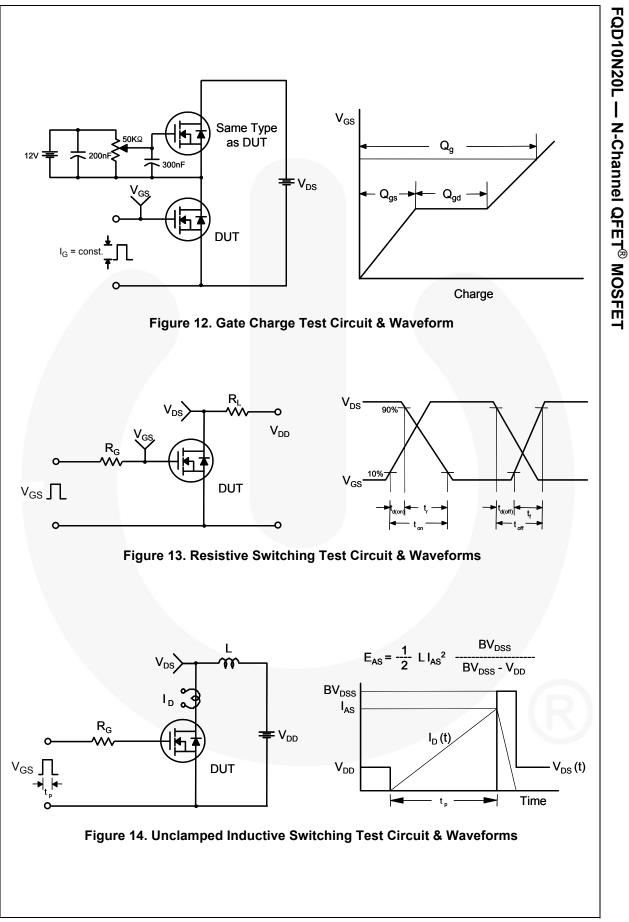
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance • Low Crss (Typ. 14 pF) and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power • 100% Avalanche Tested factor correction (PFC), and electronic lamp ballasts.

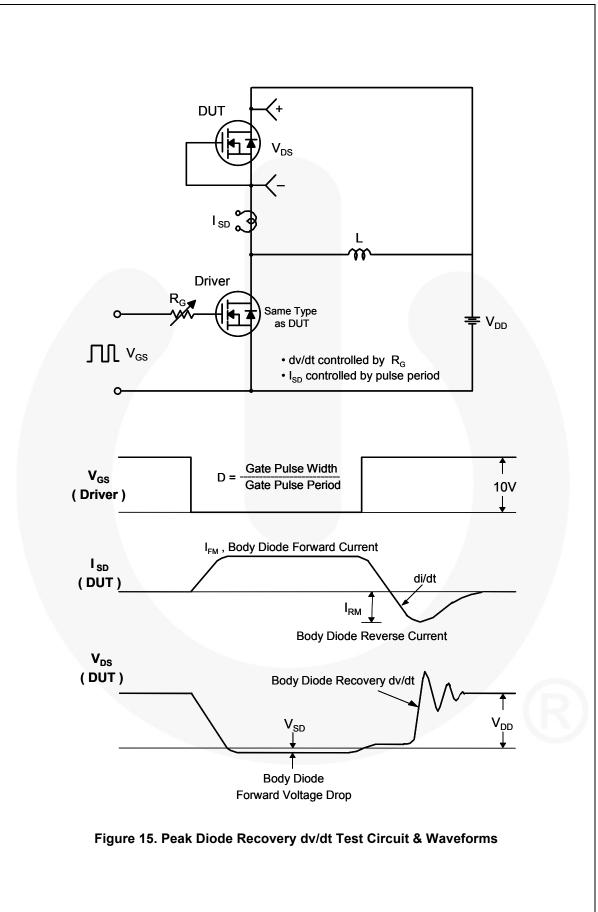
Features

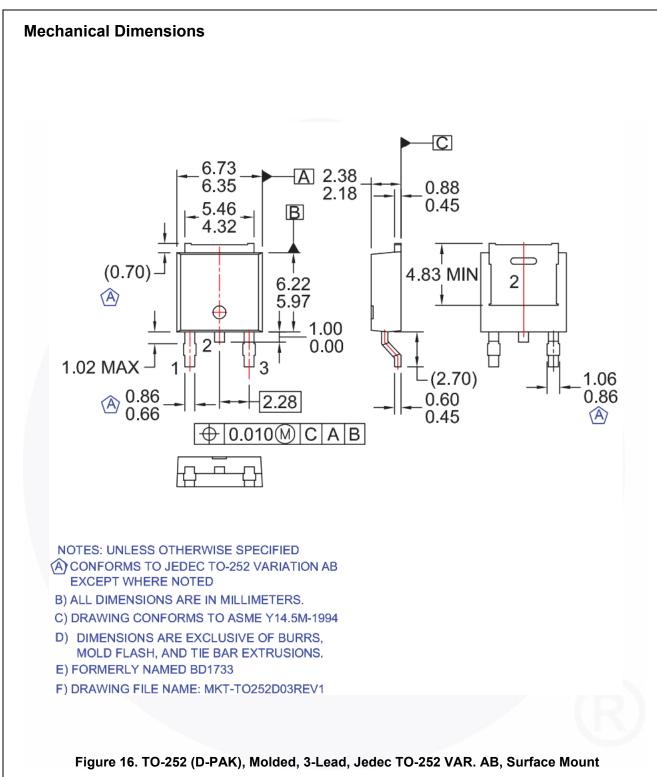
- 7.6 A, 200 V, R_{DS(on)} = 360 mΩ (Max.) @ V_{GS} = 10 V, $I_{D} = 3.8 \text{ A}$
- Low Gate Charge (Typ. 13 nC)
- · Low Level Gate Drive Requirements Allowing **Direct Operation Form Logic Drivers**


Absolute Maximum Ratings T_c = 25°C unless otherwise noted.


Symbol	Parameter		FQD10N20LTM	Unit
V _{DSS}	Drain-Source Voltage		200	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		7.6	A
	- Continuous (T _C = 100°C)		4.8	A
I _{DM}	Drain Current - Pulsed	(Note 1)	30.4	A
V _{GSS}	Gate-Source Voltage		± 20	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	180	mJ
I _{AR}	Avalanche Current	(Note 1)	7.6	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.1	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns
PD	Power Dissipation ($T_A = 25^{\circ}C$) *		2.5	W
	Power Dissipation ($T_C = 25^{\circ}C$)		51	W
	- Derate above 25°C		0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
ΤL	Maximum lead temperature for soldering, 1/8" from case for 5 seconds		300	°C


Thermal Characteristics


Symbol	Parameter	FQD10N20LTM	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	2.48	
D	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	110	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (*1 in ² Pad of 2-oz Copper), Max.	50	


Symbol Off Cha ^{BV_{DSS}}	_	•		· j· · · · · · · · · · · · · · · · · ·		Reel 330		Tape Width 16 mm		Quantity 2500 units	
Off Cha BV _{DSS}	cal Char	acteristics	T _C = 25°	C unless oth	nerwise noted.						
BV _{DSS}		Parameter			Test Con	ditions		Min.	Тур.	Max	. Unit
BV _{DSS}	aractoristic	re i									
		ce Breakdown Vo	Itage	$V_{CS} = 0$	0 V, I _D = 25	50 uA		200			V
∆BV _{DSS}	Breakdown Voltage Temperature		0					200			
$/\Delta T_J$	Coefficient		$I_D = 250 \ \mu A$, Referenced to 25°C					0.18		V/°C	
I _{DSS}				$V_{DS} = 200 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 160 \text{ V}, T_C = 125^{\circ}\text{C}$						1	μΑ
	Zero Gate Voltage Drain Current								10	μΑ	
I _{GSSF}	Gate-Body	Leakage Current	, Forward	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$						100	nA
I _{GSSR}	Gate-Body	Leakage Current	Reverse	$V_{GS} = -$	-20 V, V _{DS}	= 0 V		-		-100	nA
On Cha	aracteristic										
V _{GS(th)}		hold Voltage	_		√ _{GS} , I _D = 2	50 µA		1.0		2.0	V
R _{DS(on)}	Static Drain	0		_	10 V, I _D = 3		-	1.0	0.29	0.36	-
DS(on)	On-Resistar			00	5 V, I _D = 3.				0.29	0.30	Ω
9 _{FS}	Forward Tra	ansconductance	_		30 V, I _D = 3				9.6		S
				1					I		
	ic Charact		_	i					1	1	
C _{iss}	Input Capad		_	$V_{DS} = 2$	25 V, V _{GS} =	= 0 V,			640	830	pF
C _{oss}	Output Cap		_	f = 1.0	MHz				95	125	pF
C _{rss}	Reverse Ira	ansfer Capacitan	ce						14	18	pF
Switchi	ing Charac	cteristics									
Switchi t _{d(on)}	Turn-On De			<u> </u>	100 \/ _	10.4			13	35	ns
t _{d(on)}		elay Time			100 V, I _D =	10 A,			13 150	35 310	ns
	Turn-On De	elay Time se Time	_	V _{DD} = 7 R _G = 2	5		(Note 4)		-		-
t _{d(on)} t _r t _{d(off)}	Turn-On De Turn-On Ris	elay Time se Time elay Time			5		(Note 4)		150	310	ns
t _{d(on)} t _r	Turn-On De Turn-On Ris Turn-Off De	elay Time se Time elay Time III Time		$R_{G} = 2$	5Ω		(Note 4)		150 50	310 110	ns
t _{d(on)} t _r t _{d(off)} t _f	Turn-On De Turn-On Ris Turn-Off De Turn-Off Fa	elay Time se Time elay Time III Time Charge		$R_{G} = 2$	5 Ω 160 V, I _D =	10 A,	(Note 4)		150 50 95	310 110 200	ns ns ns
^t d(on) tr td(off) tf Qg Qgs	Turn-On De Turn-On Ris Turn-Off De Turn-Off Fa Total Gate (elay Time se Time elay Time II Time Charge re Charge		$R_G = 2$	5 Ω 160 V, I _D =	10 A,			150 50 95 13	310 110 200 17	ns ns ns nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Turn-On De Turn-On Ris Turn-Off De Turn-Off Fa Total Gate C Gate-Sourc Gate-Drain	elay Time se Time elay Time Il Time Charge Charge Charge		V _{DS} = 2 V _{DS} = 7 V _{GS} = 5	5 Ω 160 V, I _D = 5 V	10 A,		 	150 50 95 13 2.4	310 110 200 17 	ns ns ns nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	Turn-On De Turn-On Ris Turn-Off De Turn-Off Fa Total Gate C Gate-Sourc Gate-Drain	elay Time se Time elay Time II Time Charge Charge Charge		$R_G = 2$ $V_{DS} = 7$ $V_{GS} = 5$	5 Ω 160 V, I _D = 5 V imum R	10 A, atings		 	150 50 95 13 2.4	310 110 200 17 	ns ns ns nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _{gs} Q _{gd} Drain-S	Turn-On De Turn-On Ris Turn-Off De Turn-Off Fa Total Gate C Gate-Sourc Gate-Drain Source Dio Maximum C	elay Time se Time elay Time III Time Charge charge Charge de Characte Continuous Drain-	Source Dic	$R_{G} = 2$ $V_{DS} = 2$ $V_{GS} = 3$ $V_{GS} = 3$ $M = 1$ $M = 1$	5 Ω $160 V, I_D =$ 5 V imum R ard Curren	10 A, atings		 	150 50 95 13 2.4	310 110 200 17 7.6	ns ns nC nC nC A
^t d(on) t _r t _{d(off)} t _f Q _{gs} Q _{gd} Drain-S I _S	Turn-On De Turn-On Ris Turn-Off De Turn-Off Fa Total Gate C Gate-Sourc Gate-Drain Source Dio Maximum C Maximum P	elay Time se Time elay Time III Time Charge charge Charge ode Character Continuous Drain- Pulsed Drain-Sour	Source Dic rce Diode F	$R_G = 2$ $V_{DS} = 7$ $V_{GS} = 8$ M Max ode Forward C	5Ω $160 V, I_D =$ 5 V imum R ard Current Current	10 A, atings t			150 50 95 13 2.4 6.1	310 110 200 17 7.6 30.4	ns ns nc nC nC A
^t d(on) t _r ^t d(off) t _f Q _g Q _{gd} Drain-S I _S I _{SM} V _{SD}	Turn-On De Turn-On Ris Turn-Off De Turn-Off Fa Total Gate (Gate-Sourc Gate-Drain Source Dio Maximum C Maximum P Drain-Source	elay Time se Time elay Time II Time Charge Charge Charge de Character Continuous Drain- Pulsed Drain-Source ce Diode Forward	Source Dic rce Diode F	$R_{G} = 2$ $V_{DS} = 2$ $V_{GS} = 3$ $V_{GS} = 3$ $M = 1$ $M = 1$ $M = 2$ $M = 1$ $M = 2$ M	5 Ω 160 V, $I_D = 5$ 5 V imum R ard Current Current D V, $I_S = 7$.	10 A, atings t 6 A			150 50 95 13 2.4 6.1	310 110 200 17 7.6	ns ns nC nC nC A
^t d(on) t _r t _{d(off)} t _f Q _{gs} Q _{gd} Drain-S I _S	Turn-On De Turn-On Ris Turn-Off De Turn-Off Fa Total Gate (Gate-Sourc Gate-Drain Source Dio Maximum C Maximum P Drain-Sourc Reverse Re	elay Time se Time elay Time III Time Charge charge Charge ode Character Continuous Drain- Pulsed Drain-Sour	Source Dic rce Diode F	$R_{G} = 2$ $V_{DS} = 2$ $V_{GS} = 4$	5Ω $160 V, I_D =$ 5 V imum R ard Current Current	10 A, atings t 6 A 0 A,			150 50 95 13 2.4 6.1	310 110 200 17 7.6 30.4	ns ns ns nC nC nC A

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TO252-003

FQD10N20L — N-Channel QFET[®] MOSFET

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L SBVS138LT1G 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C BUK954R8-60E NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 DMN2080UCB4-7 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B DMN1006UCA6-7