

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA110－Audio and Wired－OR USB2．0 Hi－Speed （480Mbps）Switch with Negative Signal Capability and Built－in Termination

Features

－ $6 p F$ Typical Switch Off Capacitance for HS USB
－ 2.5Ω Typical On Resistance for Audio Signaling
－Negative－Swing－Capable Audio Channel
－Automatic USB Detection Available
－Power－Off Protection on the D＋／R，D－／L Ports
－Flow－Through Pin Out Eliminates PCB Vias
－Built－In Termination on Unselected Audio Paths Inhibits Audio Pop

Applications

－Cell Phone，PDA，Digital Camera，and Notebook
－LCD Monitor，TV，and Set－Top Box

Description

The FSA110 is a Double－Pole，Single Throw（DPST） switch that combines a low－distortion audio path with low off capacitance for USB applications．This configuration is ideal for wired－OR configurations， enabling shared USB2．0 Hi－Speed（HS）and audio on a single connector．The architecture is designed to allow audio signals to swing below ground so a common USB and headphone jack can be used for personal media players and portable peripheral devices．

The FSA110 is configured for default USB transfer， which gives the user control of when the audio path is enabled．The audio path defaults to audio mute and is enabled with／OE．The FSA110 includes a power－off feature on the common port when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to guarantee signal isolation．

IMPORTANT NOTE：

For additional performance information，please contact analogswitch＠fairchildsemi．com．

Ordering Information

Part Number	Top Mark	Eco Status	Package Description
FSA110K8X	A110	Green	8－Lead US8，JEDEC MO－187，Variation CA，3．0mm Wide Package
FSA110UMX	GZ	Green	10－Lead Quad，Ultrathin MLP，1．4 x 1．8mm

For Fairchild＇s definition of Eco Status，please visit：http：／／www．fairchildsemi．com／company／green／rohs green．html

Figure 1．Analog Symbol

Pin Configuration

Figure 2. 8-Lead US8

Figure 3. 10-Pin UMLP

Pin Descriptions

Name	Description
V_{CC}	Power supply.
/OE	Output enable. This pin defaults HIGH, allowing the user to mute the audio channel during power up. The audio path is only connected when /OE is driven LOW. The switch defaults to USB mode.
R, L	Audio right and left input sources.
D+/R, D-/L	USB and audio common connector port.

Truth Table

$\mathbf{V}_{\text {cc }}$	IOE $^{(1)}$	Audio Mode	USB Mode
LOW	-	OFF	ON
HIGH	LOW	ON	OFF
-	HIGH	OFF	ON

Note:

1. /OE- Internal pull-up resistor to V_{CC} provides a default USB connection. /OE must be driven LOW to activate the audio path.

Functional Description

The FSA110 is a combined USB and audio switch that enables sharing the D+/D- lines of a USB connector with stereo audio CODEC outputs. The /OE pin has an internal pull-up resistor, which results in a default USB mode configuration. This configuration provides built-in mute on the audio path during system power-up and in default USB mode allows the system to transmit USB data regardless of the switch $V_{c c}$ supply. This configuration allows the user to override the USB default state and send analog audio on the USB path when the

USB cable is connected. In such a configuration, there is no need for auto USB detection. The audio switch path is capable of handling negative signals, eliminating the need for large coupling capacitors and greatly reducing the potential for audio pop. Termination resistors on the audio R, L ports are enabled when the switch is in USB mode; which reduces the incidence of audio pop when enabling the audio path.

Application Diagram

Figure 4. Typical Application Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Units
V cc	Supply Voltage		-0.5	4.6	V
/OE	Output Enable Control Signal		-0.5	4.6	V
Vsw	Switch I/O Voltage ${ }^{(2)}$	USB Path Active	-1.0	4.6	V
		Audio Path Active	$\mathrm{V}_{\mathrm{CC}}-4.6$	4.6	V
$1{ }_{1 K}$	Input Clamp Diode Current			-50	mA
$\mathrm{I}_{\text {sw }}$	Switch I/O Current (Continuous)	Audio		100	mA
ISWPEAK	Peak Switch Current (Pulsed at 1 ms Duration, <10\% Duty Cycle)	Audio		150	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
TJ	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature (Soldering, 10 seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (JEDEC: JESD22-A114)	I/O to GND	12		kV
		All Other Pins	2		
		V Cc to GND	12		
	Charged Discharge Model (JEDEC: JESD22-C101)		2		

Note:
2. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Units
V_{Cc}	Supply Voltage	2.7	4.3	V	
$/ \mathrm{OE}$	Output Enable Control Signal	USB Path Active	0 V	4.3	V
$\mathrm{~V}_{\mathrm{sw}}$	Switch I/O Voltage	Audio Path Active	$\mathrm{V}_{\mathrm{cc}}-4.3$	4.3	V
	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$	

DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ. ${ }^{(6)}$	Max.	
Common Pins							
$V_{\text {IK }}$	Clamp Diode Voltage	3.0	$\mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$			-1.2	V
$\mathrm{V}_{\text {IH }}$	Control Input Voltage HIGH	2.7 to 4.3		1.7			
$\mathrm{V}_{\text {IL }}$	Control Input Voltage LOW	2.7 to 4.3				0.6	
			$\mathrm{V}_{\text {IN }}=4.3 \mathrm{~V}$	1		-1	
loff	Power Off Leakage Current (Common Port Only D+/R, D-/L)	0	Common Port (D+/R, D-/L) $\mathrm{V}_{\mathrm{Sw}}=4.3 \mathrm{~V}$ or Floating	-10		10	$\mu \mathrm{A}$
$\mathrm{l}_{\mathrm{NC}(\mathrm{ON})}$	On-Leakage Current of Port D+/R or D-/L	4.3	$\mathrm{D}+/ \mathrm{R}, \mathrm{D}-/ \mathrm{L}=0.3 \mathrm{~V}$ 4.0V D+, D-, R, L = Floating Figure 10	-250	1	250	nA
R_{Pu},	/OE Internal Pull-Up Resistor	4.3			3		$\mathrm{M} \Omega$
R_{T}	Audio Path Termination Resistors	4.3	$\mathrm{V}_{\mathrm{IN}}=0.3 \mathrm{~V}$ or 4.0 V		100		Ω
Audio Switch Path							
$V_{\text {Audio }}$	Audio Analog Signal Range	2.7 to 4.3		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}- \\ & 4.3 \mathrm{~V} \end{aligned}$		V cc	V
RonAudio	Audio Switch On Resistance ${ }^{(3)}$	2.7	$\begin{aligned} & \mathrm{V}_{\mathrm{LR}}=-1.5 \mathrm{~V}, 0 \mathrm{~V}, 1.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{N}}=60 \mathrm{ma} \end{aligned}$		1.5	3.0	Ω
Δ RonAudio	Audio Delta Ron ${ }^{(4)}$	2.7	$\mathrm{V}_{\mathrm{LIR}}=0.7 \mathrm{~V} \mathrm{l}_{\text {ON }}=60 \mathrm{~mA}$		0.4		Ω
RFLAT(Audio)	Audio Ron Flatness ${ }^{(5)}$	2.7	$\begin{aligned} & \mathrm{V}_{\mathrm{SW}}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \mathrm{I}_{\mathrm{ON}}= \\ & 60 \mathrm{~mA} \end{aligned}$		0.4	0.8	Ω
Power Supply							
Icc	Quiescent Supply Current	4.3	/OE $=$ Low or $\mathrm{V}_{\text {cc }}$, $\mathrm{l}_{\text {lout }}=0$		1.5	15	$\mu \mathrm{A}$

Notes:

3. On resistance is determined by the voltage drop between the A and B pins at the indicated current through the switch.
4. $\Delta R_{\mathrm{ON}}=R_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON} \text { min }}$ measured at identical V_{CC}, temperature, and voltage. Worst-case signal path, audio or USB channel, is characterized.
5. Flatness is defined as the difference between the maximum and minimum values of on resistance over the specified range of conditions.
6. Guaranteed by characterization; not production tested.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ. ${ }^{(7)}$	Max.	
ton	Turn-On Time, /OE to Output	$\begin{gathered} 2.7 \text { to } \\ 4.3 \end{gathered}$	$\begin{aligned} & V_{D+/ R, D-/ L}=1.0 \mathrm{~V} \\ & R_{L}=50 \Omega, C_{L}=50 \mathrm{Pf} \end{aligned}$ Figure 11, Figure 12, Figure 13		2		$\mu \mathrm{s}$
toff	Turn-Off Time, /OE to Output	$\begin{gathered} 2.7 \text { to } \\ 4.3 \end{gathered}$	$\begin{aligned} & V_{D+/ R, D-/ L}=1.0 \mathrm{~V} \\ & R_{L}=50 \Omega, C_{L}=50 \mathrm{pF} \end{aligned}$ Figure 11, Figure 12, Figure 13		2		$\mu \mathrm{s}$
Xtalk	Non-Adjacent Channel Crosstalk (Audio Mode)	$\begin{gathered} 3.3 \text { to } \\ 4.3 \end{gathered}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{T}}=32 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \\ & \text { Figure } 18 \end{aligned}$		-75		dB
THD	Total Harmonic Distortion (Audio Mode)	$\begin{gathered} 3.0 \text { to } \\ 4.3 \end{gathered}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{pp}} \end{aligned}$ Figure 16		0.05		\%
SNR	Signal-to-Noise Ratio (Audio Mode)	$\begin{gathered} 3.3 \text { to } \\ 4.3 \end{gathered}$	$\begin{aligned} & f=20 \mathrm{kHz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$ $\text { Figure } 16$		80		dB

Note:
7. Guaranteed by characterization; not production tested.

Capacitance

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ. ${ }^{(8)}$	Max.	
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	3.0 to 4.3	$\mathrm{V}_{\text {BIAS }}=0.2 \mathrm{~V}$		2.5		pF
Coff	Switch Off Capacitance	3.0 to 4.3	$\mathrm{f}=240 \mathrm{MHz}$ Figure 14		6.0		pF

Note:

8. Guaranteed by characterization; not production tested.

Typical Characteristics

Figure 5. Ron Audio, $\mathrm{V}_{\mathrm{cc}}=\mathbf{2 . 7 V}$

Figure 6. \quad RoN Audio, $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$

Figure 7. Total Harmonic Distortion

Test Diagrams

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{ON}} / \mathrm{I}_{\mathrm{ON}}$
Figure 8. On Resistance

D+, D-, or R/L

Figure 10. On Leakage

Figure 12. Turn-On / Turn-Off Waveforms

Each switch port is tested separately.

Figure 9. Off Leakage

R_{L}, R_{S}, and C_{L} are functions of the application environment (see tables for specific values).
${ }^{*} C_{L}$ includes test fixture and stray capacitance.
Figure 11. AC Test Circuit Load

Figure 13. Turn-On / Turn-Off Waveforms

Test Diagrams (Continued)

Figure 14. Channel Off Capacitance

Figure 15. Channel On Capacitance

Figure 17. Channel Off Isolation

Figure 16. Total Harmonic Distortion

Figure 18. Non-Adjacent Channel-to-Channel Crosstalk

Physical Dimensions

MAB08AREVC

Figure 19. 8-Lead US8, JEDEC MO-187, Variation CA, 3.0mm Wide Package

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Physical Dimensions

TOP VIEW

BOTTOM VIEW

NOTES:
A. DIMENSIONS ARE IN MILLIMETERS.
B. DIMENSIONS AND TOLERANCES PER

ASME Y14.5M, 1994
C. DRAWING FILENAME: UMLP10Arev2

Figure 20. 10-Lead Quad Ultrathin Molded Leadless Package (MLP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

RECOMMENDED LAND PATTERN

OPTIONAL MINIMIAL TOE LAND PATTERN

DETAIL A
PIN \#1 TERMINAL
SCALE: 2X
TRADEMARKS
The following includes registered and unregistered trademarks and service marks，owned by Fairchild Semiconductor and／or its global subsidianies，and is not intended to be an exhaustive list of all such trademarks．

AccuPowertm	FlashWriter＊＊	Power－SPM ${ }^{\text {TM }}$	SYSTEM＊＊
Auto－SPM ${ }^{\text {TM }}$	FPS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	
Build it Now ${ }^{\text {TM }}$	F－PFS ${ }^{\text {TM }}$	Powner S $^{\text {TM }}$	The Power Franchise
CorePLUSTM	FRFET ${ }^{\text {® }}$	Programmable Active Droop ${ }^{\text {TM }}$	0 Wer
CorePONER ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {SM }}$	QFET ${ }^{\text {® }}$	franchise
CROSSVOLT ${ }^{\text {Tm }}$	Green FPS ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$
CTL ${ }^{\text {m }}$	Green FPS ${ }^{\text {™ }}$ e－Series ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {Tm }}$	Gmax ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyCalctm
Ecospark ${ }^{\text {® }}$	GTOTM	C） TM	TinyLogic ${ }^{\text {® }}$
EfficientMax ${ }^{\text {TM }}$	IntelliMAXTM	Saving our morld 1 mW NM／INN at a time ${ }^{\text {TM }}$	TINYOPTOTM
EZSWITCH ${ }^{\text {TM＊}}$	ISOPLANAR ${ }^{\text {™ }}$	Saving our world， $1 \mathrm{~mW} / \mathrm{N} / \mathrm{KW}$ at a time ${ }^{\text {TM }}$	TinyPowertm
E7 ${ }^{\text {m＊}}$	MegaBuck ${ }^{\text {TM }}$	SignalMise ${ }^{\text {m }}$ SmartMax ${ }^{\text {TM }}$	TinyPMM ${ }^{\text {mm }}$
	MICROCOUPLER ${ }^{\text {TM }}$	SMART START＇M	TinyMire ${ }^{\text {™ }}$
DEUXPEED ${ }^{\text {® }}$	MicroFETTM	$S P M^{\otimes}$	TriFault Detect ${ }^{\text {TM }}$
	MicroPak ${ }^{\text {m }}$	STEALTH ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {Tm＊}}$
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {m }}$	μ SerDes ${ }^{\text {™ }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$ M	SuperSOTTM－3	N
FACT Quiet Series ${ }^{\text {TM }}$	Motion－SPM ${ }^{\text {m }}$	SuperSOTM－6	SerDes
FACT°	OPTOLOGIC ${ }^{\circ}$	SuperSOTTM－8	UHC ${ }^{\text {® }}$
FAST ${ }^{\text {a }}$	OPTANAR	SupreMOS ${ }^{\text {TM }}$	Ultra FRFET ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$		SyncFET ${ }^{\text {TM }}$	UniFETTM
FETBench ${ }^{\text {TM }}$		Sync－Lock ${ }^{\text {TM }}$	$V C X^{\text {TM }}$
	PDP SPM ${ }^{\text {TM }}$		VisualMax ${ }^{\text {TM }}$ $\times S^{\text {TM }}$

＊Trademarks of System General Corporation，used under license by Fairchild Semiconductor．

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RGHT TO MAKE CHANGES WTHOUT FURTHER NOTCE TO ANY PRODUCTS HEREIN TOIMPROVE RELIABIUTY，FUNCTION，OR DESIGN．FAIRCHILDDOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPUCATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN：NEITHER DOES IT CONVEY ANY LICENSEUNDER ITS PATENTRIGHTS，NOR THERIGHTS OF OTHERS．THESE SPECIFICATIONS DONOT EXPAND THE TERMS OF FARCHID＇SWORLDMDE TERMSAND CONDITIONS，SPECIFICALLY THE WARRANTY THEREIN WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY
FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body or（b）support or sustain life， and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury of the user．

2．A critical component in any component of a life support，device，or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

ANTI－COUNTERFEITING POLICY
Fairchild Semioonductor Corporation＇s Anti－Counterfeiting Policy．Fairchild＇s Anti－Counterfeiting Policy is also stated on our extemal website，whw．fairchildsemi．com， under Sales Support．

Counterfeiting of semiconductor parts is a growing problem in the industry．All manufacturers of semiconductor products are experiencing counterfeiting of their parts． Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation，substandard performance，failed applications， and increased cost of production and manufacturing delays．Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts．Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by mountry on our web page ated above．Products customers buy either from Fairchild diredty or from Authorized Fairchild Distributors are genuine parts，have full traceability，meet Fairchild＇s quality standards for handling and storage and provide access to Fairchild＇s full range of up－to－date technical and product information． Fairchild and our Authorized Distributors will stand behind all warranties and vill appropriately address any warranty issues that may arise．Fairchild will not provide ary warranty coverage or other assistance for parts bought from Unauthorized Sources．Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors．

PRODUCT STA TUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative／In Design	Datasheet contains the design specifications for product development．Specifications may change in any manner without notice．
Preliminary	First Production	Datasheet contains preliminary data；supplementary data will be published at a later date．Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design．
No ldentification Needed	Full Production	Datasheet contains final specifications．Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design．
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor． The datasheet is for reference information only．

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

