DP3T USB Type C Audio and UART Analog Switch with OVP

Description

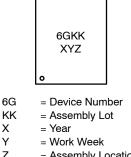
The FSA1153 is a bi-directional, low power, high speed USB2.0 Type-C, Audio and UART analog switch with overvoltage protection. It is configured as a Double-Pole, Triple Throw (DP3T) switch. The FSA1153s protection function prevents damage to Type-C USB 2.0 port pins caused by high voltage. It provides a receptacle side OVP function on the USB 2.0 data pins and will turn off the relative switch once the voltage level on DN L or DP R exceed the OV threshold. It can withstand up to 20.5 V DC.

Features

- DP3T USB Type C Audio and UART Analog Switch
- V_{DD}: 2.7 V to 5.5 V
- I_{CC}: 35 μA Typical
- USB Switch
 - ◆ -3 dB Bandwidth (Sdd21): 850 MHz
- Audio Switch:
 - ◆ Negative Rail Capability: -3 V to +3 V
 - Audio Path $R_{ON} = 1 \Omega$ (Typ.) at 3.3 V
 - THD + N = -110 dB; 1 V_{RMS}, 32 Ω Load; f = 20 Hz ~ 20 kHz with A-Weighted Filter
- UART Switch:
 - RON: 5 Ω (Typ.) at 3.3 V
 - ◆ Signal Range: 0 4.4 V
- High Power Supply Ripple Rejection
- 20.5 V Overvoltage Protection on DN L/DP R
- 20.5 V Surge Protection on DN L/DP R

Applications

- Mobile Phones
- Tablets
- Notebook PC
- Media Player


ON Semiconductor®

www.onsemi.com

WLCSP12 CASE 567WM

= Assembly Location

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

1

Typical Application

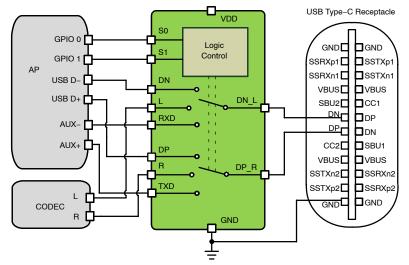
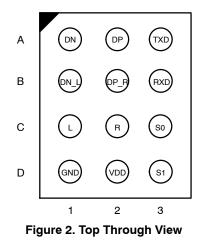



Figure 1. Typical Application

Pin Definitions

PIN DESCRIPTION

Pin	Name	Description
A1	DN	USB Data (Differential –)
A2	DP	USB Data (Differential +)
A3	TXD	UART Transmit Data
B1	DN_L	USB/Audio/UART Common Connector
B2	DP_R	USB/Audio/UART Common Connector
B3	RXD	UART Receive Data
C1	L	Audio – Left Channel
C2	R	Audio – Right Channel
C3	S0	Data Switch Select
D1	GND	Chip Ground
D2	VDD	Power Supply (2.7 to 5.5 V)
D3	S1	Data Switch Select

Table 1. CONTROL LOGIC STATUS

S1	S0	USB Switch	Audio Switch	UART Switch
0	0	ON	OFF	OFF
0	1	OFF	ON	OFF
1	0	OFF	OFF	ON
1	1	Disable	Disable	Disable

ORDERING INFORMATION

Part Number	Operating Temperature Range	Package	Top Mark
FSA1153UCX	−40 to +85°C	12–Ball WLCSP, Non–JEDEC 1.45 mm x 1.615 mm, 0.4 mm Pitch	6G

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ABSOLUTE MAXIMUM RATINGS

Symbol		Parameter	Min.	Max.	Unit
VDD	Supply Voltage from VDD	Supply Voltage from VDD			V
V _{SW_C}	V_{DP_R} to GND, V_{DN_L} to GND (Note 1)		-3.6	20.5	V
V _{SW_USB}	V_{DP} to GND, V_{DN} to GND (Note 1)		-0.5	6.5	V
V _{SW_Audio}	V_L to GND, V_R to GND (Note 1)		-3.6	6.5	V
V_{SW_UART}	V_{TXD} to GND, V_{RXD} to GND (Note 1)		-0.5	6.5	V
V _{SW}	Control Input Voltage: S1, S0 (Note 2)	Control Input Voltage: S1, S0 (Note 2)			
I _{SW_Audio}	Switch I/O Current, Audio path: R, L, DP	-250	250	mA	
I _{SW_USB}	Switch I/O Current, USB path; DP to DP	-	100	mA	
I _{SW_UART}	Switch I/O Current, UART path; TXD to	DP_R, RXD to DN_L	_	50	mA
I _{IK}	DC Input Diode Current		-50	_	mA
ESD	Human Body Model,	Connector side and power pins: VDD, DP_R, DN_L	4	_	kV
	ANSI / ESDA / JEDEC JS-001-2012	Host side pins: The rest pins	2	_	
	Charged Device Model, JEDEC: JESD22-C101			_	
Surge	IEC 61000-4-5 System	Connector side pins: DP_R, DN_L	-20.5	+20.5	V
T _A	Absolute Maximum Operating Temperation	ure	-40	+85	°C
T _{STG}	Storage Temperature		-65	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

2. V_{SW} refers to analog data switch paths.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit			
POWER		-	-					
VDD	Supply Voltage	2.7	-	5.5	V			
USB SWITC	USB SWITCH							
V _{SW_USB}	V_{DP} to GND, V_{DN} to GND, V_{DP_R} to GND, V_{DN_L} to GND	0	_	4.5	V			
AUDIO SWITCH								
V _{SW_Audio}	V_{DP_R} to GND, V_{DN_L} to GND, V_L to GND, V_R to GND,	-3.0	_	+3.0	V			
UART SWIT	СН							
V_{SW_UART}	V _{TXD} to GND, V _{RXD} to GND	0	_	4.4	V			
OPERATIN	GTEMPERATURE							
T _A	Ambient Operating Temperature	-40	25	+85	°C			
CONTROL	CONTROL VOLTAGE (S1, S0)							
VIH	Input Voltage High	1.3	-	VCC	V			
V _{IL}	Input Voltage Low	0	_	0.5	V			

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC AND TRANSIENT CHARACTERISTICS

 $(V_{DD}$ = 2.7 V to 5.5 V. V_{DD} (Typ.) = 3.3 V, T_A = -40°C to 85°C, and T_A (Typ.) = 25°C, unless otherwise specified)

				T _A = -	40°C to	5 85°C	
Symbol	Parameter	Condition	Power	Min	Тур	Max	Unit
GENERAL	DEVICE PINS						
Icc	Supply current	For all switches	VDD: 2.7 to 5.5	-	-	35	μA
I _{CCZ}	Quiescent current	S0, 1 = 1		_	-	3	
I _{CCT}		Vin = 1.5 V		-	10	-	μA
	PINS: DP_R, DN_L			1	1		
I _{OZ}	Off leakage current of Port DP_R and DN_L	DP_R, DN_L = -3 V to 4.0 V	VDD: 2.7 to 5.5	-3.0	0.1	3.0	μA
I _{OFF}	Power-Off leakage current of Port DP_R and DN_L	DP_R, DN_L = 0 V to 4.0 V	Power off	-3.0	0.1	3.0	μA
V _{OV_TRIP}	Input OVP Lockout	Sweep from 3 V to 6 V	VDD: 2.7 to 5.5	4.7	5.0	5.3	V
V _{OV_HYS}	Input OVP Hysteresis		VDD: 2.7 to 5.5	0.2	0.3	0.4	V
AUDIO SW	ИТСН						<u>.</u>
I _{ON}	On leakage current of Audio switch	DN_L, DP_R = -3 V to 3.0 V, R, L = Float	VDD: 2.7 to 5.5	-2.0	0.1	2.0	μA
I _{OZ}	Off leakage current of	L / R = -3 V to 3.0 V	VDD: 2.7 to 5.5	-1	0.1	1	μA
I _{OFF}	Input Leakage Current , Power off	L, R = 0 to 3 V, DP_R, DP_L = Float, (I _{SW} = 0 mA)	Power off	-1.0	0.1	1.0	μA
R _{ON}	Switch On Resistance	I_{SW} = 100 mA, V_{SW} = -3 V to 3 V	VDD: 2.7 to 5.5	-	1	2	Ω
ΔR_{ON}	On Resistance Matching, Channel to Channel	I_{SW} = 100 mA, V_{SW} = -3 V to 3 V	VDD: 2.7 to 5.5	-	0.1	0.2	Ω
R _{FLAT}	On Resistance Flatness	I _{SW} = 100 mA, V _{SW} = -3 V to 3 V	VDD: 2.7 to 5.5	_	10	-	mΩ
JSB SWIT	СН	•					
I _{ON}	On leakage current of USB switch	DN_L, DP_R = 0 V to 3.6 V, DP = DN = Float	VDD: 2.7 to 5.5	-3.0	0.1	5	μA
		DN_L, DP_R = 3.6 V to 4.5 V, DP = DN = Float		-5	-	15	μA
I _{OZ}	Off leakage current of Port DP and DN	DN, DP = 0 V to 4.5 V	VDD: 2.7 to 5.5	-3.0	0.1	3.0	μA
I _{OFF}	Power-Off leakage current of Port DP and DN	DN, DP = 0 V to 4.5 V	Power off	-3.0	0.1	3.0	μA
R _{ON_USB}	Switch On Resistance	V_{SW} = 0.4 V, I _{ON} = -8 mA	VDD: 2.7 to 5.5	-	3	5	Ω
		Vsw = 4.0 V, I_{ON} = -8 mA		-	3	5	
JART SWI	тсн						
I _{ON}	On leakage current of UART switch	DN_L, DP_R = 0 V to 4.4 V, UART = Float	VDD: 2.7 to 5.5	-3.0	0.1	15	μA
I _{OZ}	Off leakage current of Port TXD and RXD	TXD/RXD = 0 V to 4.4 V,	VDD: 2.7 to 5.5	-3.0	0.1	3.0	μA
I _{OFF}	Power-Off leakage current of Port TXD/RXD	TXD/RXD = 0 V to 4.4 V,	Power off	-3.0	0.1	3.0	μA
R _{ON_UART}	UART Switch On Resistance	V_{SW} = 0 to 4.4 V, I_{ON} = –8 mA	VDD: 2.7 to 5.5	-	5	7	Ω
S1, S0							
VIH	Input Voltage High		VDD: 2.7 to 5.5	1.3	-	VDD	V

V _{IH}	Input Voltage High		VDD: 2.7 to 5.5	1.3	-	VDD	V	
V_{IL}	Input Voltage Low		VDD: 2.7 to 5.5	-	-	0.5	V	
R _{PD}	Internal Pull down resistor on S1,S0	S1, S0 = VDD	VDD: 2.7 to 5.5	-	3	-	MΩ	

AC CHARACTERISTICS

 $(V_{DD} = 2.7 \text{ V to } 5.5 \text{ V. } V_{DD}(\text{Typ.}) = 3.3 \text{ V}, \text{ } \text{T}_{\text{A}} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}. \text{ } \text{T}_{\text{A}} \text{ (Typ.)} = 25^{\circ}\text{C}, \text{ unless otherwise specified)}$

					T _A = -	-40°C to	o 85°C	Unit
Symbol	Parameter	Condition		Power	Min	Тур	Max	Unit
AUDIO PA	ТН ЅѠӏТСН							
t _{ON}	Turn On Time (Note 3)	DP/R = DN/L = 0 V \rightarrow to 1 V, L, R =	32 Ω to GND		-	80	-	μs
t _{OFF}	Turn OFF Time (Note 3)	DP/R = DN/L = 1 V fall to GND, L, F	$R = 32 \Omega$ to GND		-	0.4	-	μs
t _{BBM}	Break Before Make (Note 3)	$\begin{array}{l} \text{USB} \rightarrow \text{Audio, DP/R} = \text{DN/L} = 0 \text{ V} \\ \text{L, R} = 32 \ \Omega \text{ to GND, DP, DN} = 50 \ \Omega \\ \text{UART} \rightarrow \text{Audio, UART} = 50 \ \Omega \end{array}$			_	80	_	μS
T _{EN}	Enable Time (Note 3)	DP/R = DN/L = 1 V, L, R = 32 Ω to GND, S[1, 0] from 11 to 01			-	230	-	μs
T _{Dis}	Disable Time (Note 3)	DP/R = DN/L = 1 V, L, R = 32 Ω to GND, S[1, 0] from 01	to 11		-	0.3	-	μs
t _{OVP}	Response Time	R_{LOAD} = 32 Ω , Vsw = 3 V to 6 V (slemeasure OV threshold to 90% OVP output falling			-	0.2	1	μs
O _{IRR}	Off Isolation (Note 3)	f = 1 kHz, R _L = 50 Ω , C _L = 0 pF, V _{SV}	_V = 1 V _{RMS}		-	-100	-	dB
		f = 1 MHz, R_L = 50 Ω , C_L = 0 pF, V_S	_W = 1 V _{RMS}	1		-65	1	
X _{TALK}	Cross Talk (Adjacent) (Note 3)	f = 1 kHz, R _L = 50 Ω, V _{SW} = 1 V _{RMS}	;		-	-120	-	dB
	Cross Talk (USB–Audio) (Note 3)	f = 1 kHz or 20 kHz, R_L = 50 Ω, V_{SW} = 1 V_{RMS} on DP or DN			-	-108	-	
BW	-3 dB Bandwidth (Note 3)	R _L = 50 Ω			-	500	-	MHz
PSRR	Power Supply Rejection	V _{PSRR} = VDD + 100 mV _{RMS}	$R_L = 32 \Omega$		-	-119	-	dB
	Ratio (Note 3)	$ \begin{array}{l} R_{L} = 20 \; k\Omega \; \text{or} \; 32 \; \Omega \\ (\text{at DP} \; / \; R, DN \; / \; L), \; f = 1 \; kHz \end{array} $	$R_L = 20 \ k\Omega$		-	-105	-	1
THD+N	Total Harmonic Distortion	R_L = 16 Ω , f = 20Hz ~ 20 kHz,	With A-weighted		-	-108	-	dB
	+ Noise (Note 3)	V _{SW} = 0.5 V _{RMS}	Non A-weighted	1	-	-105		
		R_L = 32 Ω , f = 20Hz ~ 20 kHz,	With A-weighted		_	-110		dB
		V _{SW} = 1 V _{RMS}	Non A-weighted		_	-105		
		R_L = 20 k Ω , f = 20 Hz ~ 20 kHz,	With A-weighted	1	-	-110		dB
		$V_{SW} = 0.3 V_{RMS}$	Non A-weighted	1	-	-105		
USB SWIT	СН		•					
t _{ON}	Turn-on time (Note 3)	DP/R = DN/L = 1.0 V, DP, DN = 50 9	Ω to GND		-	40	-	μs
t _{OFF}	Turn-off time (Note 3)	DP/R = DN/L = 1.0 V, DP, DN = 50 9	Ω to GND		-	0.35	-	μs
Т _{ВВМ}	Break-Before-Make (Note 3)	Audio \rightarrow USB; DP/R = DN/L = 1.5 V L, R = 50 Ω to GND, DP, DN = 50 Ω UART \rightarrow USB: UART = 50 Ω			-	40	-	μs
T _{EN}	Enable Time (Note 3)	DP/R = DN/L = 1 V, DP/DN = 50 Ω t S[1, 0] from 11 to 00	to GND,		-	200	-	μS
T _{Dis}	Disable Time (Note 3)	DP / R = DN / L = 1 V, DP / DN = 50 S[1, 0] from 00 to 11) Ω to GND,		-	0.25	-	μS
BW	-3dB Bandwidth (Note 3)	RL = 50 Ω , Switch ON			-	0.85	-	GHz
X _{TALK}	Cross Talk (Adjacent) (Note 3)	RL = 50 Ω , Switch ON, f = 240 MHz	:		-	-40	-	dB
O _{IRR}	Off Isolation (Note 3)	RL = 50 Ω , Switch OFF, f = 240 MH	Z		-	-24	-	dB
t _{OVP}	Response Time	R_{LOAD} = 50 Ω , Vsw = 3 V to 6 V (sle measure OV threshold to 90% OVP output falling			-	0.2	1	μs

AC CHARACTERISTICS (continued)

 $(V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}. V_{DD}(Typ.) = 3.3 \text{ V}, T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}. T_A (Typ.) = 25^{\circ}\text{C}, \text{ unless otherwise specified})$ (continued)

				T _A = -	-40°C to	o 85°C	Unit
Symbol	Parameter	Condition	Power	Min	Тур	Max	Unit
USB SWIT	ГСН					-	
t _{Recovery}	Recovery Debounced time (Note 3)	R_{LOAD} = 50 $\Omega,$ Vsw = 6 V to 3 V (slew rate < 10 V/1 $\mu s),$ measure OV threshold to 90% output rising		-	30	-	us
t _{PD}	Propagation Delay (Note 3)	$R_L = 50 \Omega$, $C_L = 5 pF$		-	100	-	ps
t _{SK(P)}	Skew of Opposite Transitions of the Same Output (Note 3)	$R_L = 50 \ \Omega, \ C_L = 5 \ pF$		-	10	-	ps
tj	Total Jitter (Note 3)	V_{SW} = 0.4 Vdiff _{PP} , R _L = 50 Ω, C _L = 5 pF, t _R = t _F = 500 ps (10 – 90%) @ 480 Mbps (PBRS = 2 ¹⁵ – 1)		-	200	-	ps
UART SW	ІТСН					-	-
t _{ON}	Turn-on time (Note 3)	UART = 1.8 V, Rload = 50 Ω		-	50	-	μs
t _{OFF}	Turn-off time (Note 3)	UART = 1.8 V, Rload = 50 Ω		-	0.4	-	μs
T _{BBM}	Break-Before-Make (Note 3)	USB \rightarrow UART, USB = 50 Ω , UART=50 Ω Audio \rightarrow UART		-	50	-	μs
T_{EN}	Enable Time (Note 3)	DP/R = DN/L = 1 V, DP/DN = 50 Ω to GND, S[1, 0] from 11 to 10		-	200	-	μs

'EN		S[1, 0] from 11 to 10	-	200	1	μs
T _{Dis}	Disable Time (Note 3)	DP/R = DN/L = 1 V, DP/DN = 50 Ω to GND, S[1, 0] from 10 to 11	-	300	_	μs
t _{OVP}	Response Time	R_{LOAD} = 50 $\Omega,$ Vsw = 3 V to 6 V (slew rate > 10 V/1 $\mu s),$ measure OV threshold to 90% OVP trigger level of output falling	I	0.2	1	μs
BW	Bandwidth (Note 3)	$R_L = 50 \ \Omega$	-	400	-	MHz

3. Guaranteed by characterization, not production tested.

CAPACITANCE (V_{DD} = 2.7 V to 5.5 V. V_{DD}(Typ.) = 3.3 V, T_A = -40° C to 85°C. T_A (Typ.) = 25°C, unless otherwise specified)

				T _A = -	-40°C to	o 85°C	
Symbol	Parameter	Condition	Power	Min	Тур	Max	Unit
AUDIO PATH SWITCH	ł						
CON_USB/Audio/UART	On Capacitance (Common Port) (Note 4)	f =1MHz, 240 MHz, 100 mV _{PK-PK} , 100 m DC bias	NV 3.3	-	7	_	pF
C _{OFF_USB/Audio/UART}	Off Capacitance (Common Port) (Note 4)	f = 1MHz, 240MHz, 100 mV _{PK-PK} , 100 m DC bias	NV 3.3	-	7	_	pF
C_{OFF_USB}	Off Capacitance (Non–Common Ports) (Note 4)	f = 240 MHz, 100 mV _{PK-PK} , 100 mV DC l	bias 3.3	-	2.5	-	pF
C_{OFF_Audio}	Off Capacitance (Non–Common Ports) (Note 4)	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bia	as 3.3	-	3.5	-	pF
C _{OFF_UART}	Off Capacitance (Non–Common Ports) (Note 4)	f = 1 MHz, 100 mV _{PK–PK} , 100 mV DC bia	as 3.3	-	3.5	-	pF
C _{IN}	EN,SEL Pin Capacitance (Note 4)		S1, S0 0	_	2.5	-	pF

4. Guaranteed by characterization, not production tested.

Application Information

Over-Voltage Protection

The FSA1153 features over-voltage protection (OVP) on the receptacle side pins DN_L and DP_R which will switch off the internal signal routing path if the input voltage exceeds the OVP threshold. When an over voltage condition has occurred the switch will open immediately and remain open until the over voltage condition is removed.

Test Diagrams

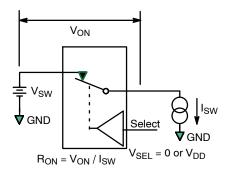


Figure 3. On Resistance

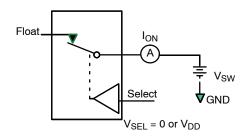


Figure 5. On Leakage

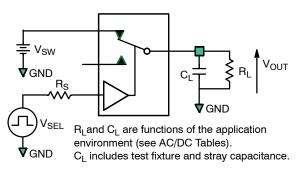


Figure 7. Test Circuit Load

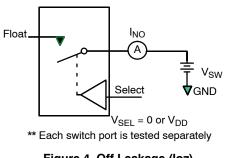
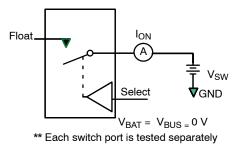
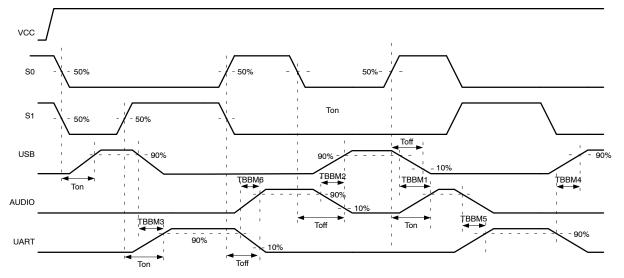
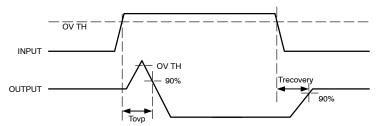
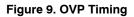
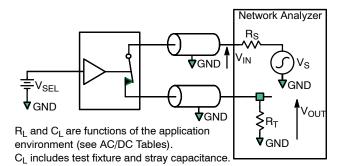
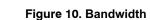


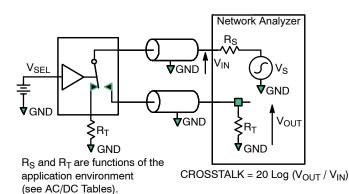
Figure 4. Off Leakage (loz)


Figure 6. Power Off Leakage (loff)






Test Diagrams (continued)

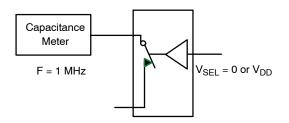


Figure 14. Channel On Capacitance

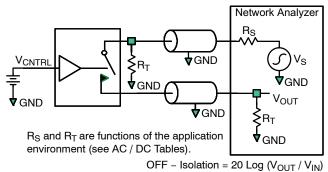
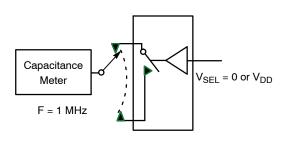
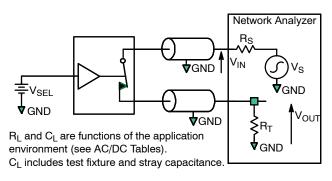
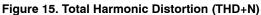
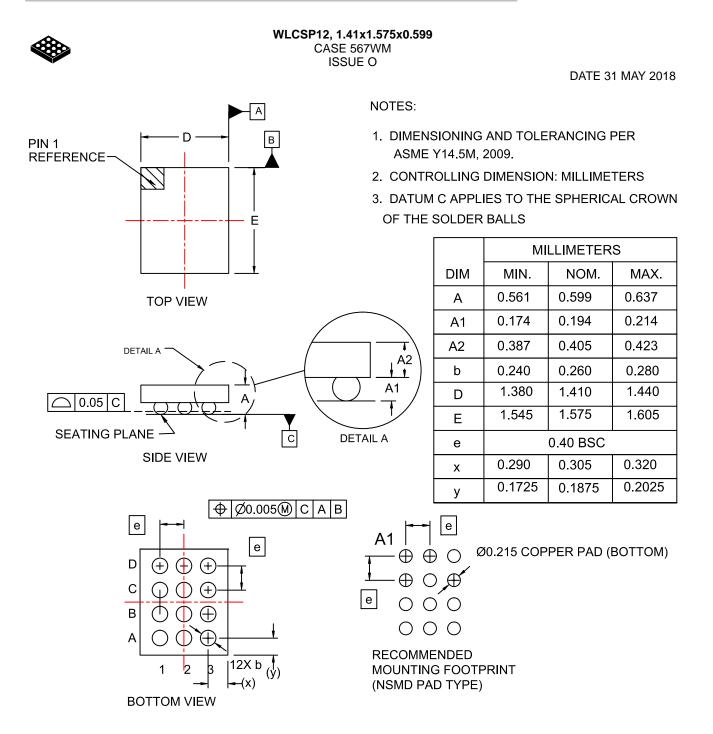





Figure 11. Channel Off Isolation



DOCUMENT NUMBER:	98AON92156G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WLCSP12, 1.41x1.575x0.59	5x0.599 PAGE 1				
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconductor	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for USB Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NLAS7222AMTR2G NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI3USB31532ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FSUSB42MUX FT234XD-R PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4717ETB+T MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4899EETE+ MAX4906EFELB+T MAX4907FELA+T MAX4907ELA+T MAX4983EEVB+T MAX4984EEVB+T MAX4899AEETE+T MAX14618ETA+T