ON Semiconductor

Is Now

# onsemi 

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{\text {® }}$
FSA1208
Low-Power, Eight-Port, High-Speed Isolation Switch

## Features

- Low On Capacitance: 6 pF Typical
- Low On Resistance: $15 \Omega$ Typical
- Low Pow er Consumption: 1 A Maximum
- $10 \mu \mathrm{~A}$ Maximum Iсст over an Expanded Voltage Range ( $\mathrm{V}_{\mathbb{N}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.3 \mathrm{~V}$ )
- Wide -3 dB Bandw idth: $>400 \mathrm{MHz}$
- Packaged in Space-Saving 20-Lead MLP ( $2.5 \times 4.5 \mathrm{~mm}$ )
- $\quad 7.5$ kV ESD Rating; >16 kV Pow er/GND ESD Rating
- Low Coff Capacitance: 2.5 pF Typical


## Applications

- DIMM DDR Memory


## Description

The FSA1208 is a low-power, eight-port, high-speed switch. This part is configured as a single-pole, singlethrow switch and is optimized for isolating a highspeed source, such as a DDR memory bus. The FSA1208 features an extremely low on capacitance (CON) of 6 pF Superior channel-to-channel crosstalk minimizes interference.

The FSA1208 contains special circuitry on the A \& B pins that allows the device to withstand an over-voltage condition. This device is also designed to minimize current consumption even when the control voltage applied to the /OE pin is low er than the supply voltage ( $\mathrm{V}_{\mathrm{CC}}$ ). Applications include port isolation and switching in DDR memory modules, portable cell phones, PDAs, digital cameras, printers, and notebook computers.

## Ordering Information

| Part Number | Top Mark | Operating <br> Temperature Range | Package |
| :---: | :---: | :---: | :---: |
| FSA1208BQX | F1208 | -40 to $+85^{\circ} \mathrm{C}$ | 20-Lead, Quad, Molded Leadless Package <br> (MLP), $2.5 \times 4.5 \mathrm{~mm}$ |



Figure 1. Analog Symbol

## Pin Configurations



Figure 2. Pin Assignments for MLP (Top Through View)

## Pin Definitions

| Pin \# | Name | Description |
| :---: | :---: | :---: |
| 20 | /OE | Sw itch Enable |
| $2-9$ | A1-A8 | A Side of Bus |
| $12-19$ | B8-B1 | B Side of Bus |
| 11 | NC | No Connection |
| 1 | VCC | Pow er |
| 10 | GND | Ground |

## Truth Table

| /OE | Function |
| :---: | :---: |
| HIGH | Disconnect |
| LOW | A1-A8=B1-B8 |

## Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only

| Symbol | Parameter |  | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc | Supply Voltage |  | -0.50 | +5.25 | V |
| $\mathrm{V}_{\text {CNTRL }}$ | DC Input Voltage (/OE) ${ }^{(1)}$ |  | -0.50 | $\mathrm{V}_{\mathrm{Cc}}$ | V |
| V ${ }_{\text {SW }}$ | DC Sw itch VO Voltage ${ }^{(1)}$ |  | -0.50 | 5.25 | V |
| lik | DC Input Diode Current |  | -50 |  | mA |
| lout | DC Output Current |  |  | 50 | mA |
| TSTG | Storage Temperature |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| ESD | Human Body Model, JEDEC: JESD22-A114 | All Pins |  | 7.5 | kV |
|  |  | VO to GND |  | 8 |  |
|  |  | Pow er to GND |  | 16 |  |
|  | Charged Device Model, JEDEC: JESD22-C101 |  |  | 2 |  |

## Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

## Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

| Symbol | Parameter | Min. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 2.3 | 4.3 | V |
| $\mathrm{~V}_{\mathrm{CNTRL}}{ }^{(2)}$ | Control Input Voltage (S, /OE) | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{SW}}$ | Sw itch VO Voltage | -0.5 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |

Note:
2. The control input must be held HIGH or LOW; it must not float.

## DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherw ise specified.

| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| VIK | Clamp Diode Voltage | $\mathrm{ln}=-18 \mathrm{~mA}$ | 2.5 |  |  | -1.2 | V |
| $\mathrm{V}_{\text {IH }}$ | Input Voltage High |  | 2.3 to 3.6 | 1.3 |  |  | V |
|  |  |  | 4.3 | 1.7 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Input Voltage Low |  | 2.3 to 3.6 |  |  | 0.5 | V |
|  |  |  | 4.3 |  |  | 0.7 | V |
| IN | Control Input Leakage | $\mathrm{V}_{\text {sw }}=0$ to $\mathrm{V}_{\text {cc }}$ | 4.3 | -1 |  | 1 | $\mu \mathrm{A}$ |
| loz | Off State Leakage | $0 \leq \mathrm{A}, \mathrm{B} \leq 3.6 \mathrm{~V}$ | 4.3 | -2 |  | 2 | $\mu \mathrm{A}$ |
| Ron | Sw itch On Resistance ${ }^{(3)}$ | $\mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}$, lon $=-10 \mathrm{~mA}$ Figure 3 | 2.5 |  | 7 |  | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{SW}}=1.8 \mathrm{~V}$, $\mathrm{l}_{\mathrm{N}}=-10 \mathrm{~mA}$ Figure 3 | 2.5 |  | 15 |  | $\Omega$ |
| Icc | Quiescent Supply Current | $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {cc }}$, lout $=0$ | 4.3 |  |  | 1 | $\mu \mathrm{A}$ |
| Icct | Increase in Icc Current Per Control Voltage and Vcc | $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$ | 2.7 |  |  | 10 | $\mu \mathrm{A}$ |

Note:
3. Measured by the voltage drop betw een $A$ and $B$ pins at the indicated current through the sw itch.

On resistance is determined by the low er of the voltage on the two (A or B ports).
AC Electrical Characteristics
All typical values are for $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherw ise specified.

| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +850 C |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| ton | Turn-On Time, /OE to Output | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V} \mathrm{sW}=1.8 \mathrm{~V} \\ & \text { Figure 4, Figure } 5 \end{aligned}$ | 2.3 to 3.6 |  | 15 | 34 | ns |
| tuff | Turn-Off Time, /OE to Output | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V} \mathrm{SW}=1.8 \mathrm{~V} \\ & \text { Figure 4, Figure } 5 \end{aligned}$ | 2.3 to 3.6 |  | 12 | 25 | ns |
| tad | Propagation Delay ${ }^{(4)}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF} \\ & \text { Figure 4, Figure } 6 \end{aligned}$ | 3.3 |  | 0.35 |  | ns |
| OIRR | Off Isolation | $\mathrm{R}_{\mathrm{L}}=50 \quad \Omega, \mathrm{f}=400 \mathrm{MHz}$ <br> Figure 11 | 2.3 to 3.6 |  | -40 |  | dB |
| Xtalk | Non-Adjacent Channel Crosstalk | $\mathrm{R}_{\mathrm{L}}=50 \quad \Omega, \mathrm{f}=100 \mathrm{MHz}$ Figure 12 | 2.3 to 3.6 |  | -40 |  | dB |
| BW | -3dB Bandw idth | $R \mathrm{~L}=50 \Omega, \mathrm{CL}=0 \mathrm{pF}$ Figure 10 | 2.3 to 3.6 |  | 1000 |  | MHz |
|  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ <br> Figure 10 |  |  | 750 |  | MHz |

## Note:

4. Guaranteed by characterization.

## High-Speed-Related AC Electrical Characteristics

| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| tsk(0) | Channel-to-Channel Skew ${ }^{(5)}$ | $\mathrm{CL}=5 \mathrm{pF}$ | 3.3 |  | 40 | 80 | ps |
| tsk(P) | Skew of Opposite Transitions of the Same Output ${ }^{(5)}$ | $\mathrm{CL}=5 \mathrm{pF}$ | 3.3 |  | 15 | 40 | ps |
| tsk(PKG) | Package-to-Package Skew ${ }^{(5)}$ | $\mathrm{CL}=5 \mathrm{pF}$ | 3.3 |  | 60 | 100 | ps |

Note:
5. Guaranteed by characterization.

## Capacitance

| Symbol | Parameter | Conditions | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| $\mathrm{CIN}^{\text {N }}$ | Control Pin Input Capacitance | $\mathrm{V}_{\mathrm{CC}}=0.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  | 2.0 |  | pF |
| Con | D+/D- On Capacitance | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, / \mathrm{OE}=0 \quad \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ Figure 9 |  | 6.0 |  |  |
| Coff | D1n, D2n Off Capacitance | $\mathrm{V}_{\mathrm{cc}} \text { and } / \mathrm{OE}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ Figure 8 |  | 2.5 |  |  |

## Test Diagrams



Figure 3. On Resistance

$R_{L}, R_{S}$, and $C_{L}$ are functions of the application environment (see AC tables for specific values). $\mathrm{C}_{\mathrm{L}}$ includes test fixture and stray capacitance.

Figure 4. AC Test Circuit Load


Figure 6. Propagation Delay
( $\mathrm{try}_{\mathrm{r}} \mathrm{t}_{\mathrm{o}}$ - 500ps)


Figure 8. Channel Off Capacitance


Figure 5. Turn-On / Turn-Off Waveforms


Figure 7. Intra-Pair Skew Test tSK(P)


Figure 9. Channel On Capacitance

Test Diagrams (Continued)

 environment (see AC Tables for specific values).

Figure 10. Bandwidth


Figure 11. Channel Off Isolation


Figure 12. Non-Adjacent Channel-to-Channel Crosstalk

## Physical Dimensions



Figure 13. 20-Lead, Molded Leadless Package (MLP)

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. Amer ic an Technical Support: 800-282-9855 Toll Free USA/Canada.
Eur ope, Middle East and Afr ica Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semic onductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderit

For additional information, please contact your local Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12


[^0]:    
    
    
    
    
    
    
    
    
    
    
    
     Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

