

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA2257

Low Ron，Low－Voltage Dual SPDT Bi－Directional Analog Switch

Features

－Maximum 1.15Ω On Resistance（RoN）at $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
－ 0.3Ω Maximum Ron Flatness at $+5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
－Space－Saving MicroPak ${ }^{\text {TM }}$
－Broad V_{cc} Operating Range： 1.65 V to 5.50 V
－Fast Turn－On and Turn－Off Time
－Break－Before－Make Enable Circuitry
－Over－Voltage Tolerant TTL－Compatible Control Input

Applications

－Cell Phone
－PDA
－Mobile Devices

Description

The FSA2257 is a high－performance bi－directional dual Single－Pole／Double－Throw（SPDT）analog switch．This switch can be configured as either a multiplexer or a de－ multiplexer by select pins．The device features ultra－low $R_{\text {ON }}$ of 1.3Ω maximum at $4.5 \mathrm{~V} \mathrm{~V}_{\text {CC }}$ and operates over the wide V_{cc} range of 1.65 V to 5.50 V ．The device is fabricated with submicron CMOS technology to achieve fast switching speeds and is designed for break－before－ make operation．The select input is TTL－level compatible．

Ordering Information

Part Number	Package Number	Top Mark	Package Description	Packing Method
FSA2257L10X	MAC10A	EP	10－Lead MicroPak ${ }^{\text {TM }, 1.6 \times 2.1 \mathrm{~mm}}$	5000 Units Tape and Reel
FSA2257MTCX	MCT14	FSA2257	14－Lead Thin Shrink Small Outline Package （TSSOP），JEDEC MO－153，4．4 mm Wide	2500 Units Tape and Reel
FSA2257MUX	MUA10A	FSA 2257	10－Lead Molded Small Outline Package （MSOP），JEDEC MO－187，3．0 mm	4000 Units Tape and Reel

FSA2257
Figure 1．Block Diagram

Pin Configurations

Figure 2. Pin Assignments for TSSOP (Top View)

Figure 4. Pin Assignments for MSOP (Top View)

Figure 3. MicroPak ${ }^{\text {TM }}$ Pad Assignments (Top View)

Figure 5. Analog Symbols (Top Through View)

Pin Definitions

Pin\# TSSOP	Pin\# MicroPak $^{\text {TM }}$	Pin \# MSOP	Name	Description
1	7	4	1 A	Data Ports
2,5	10	8	GND	Ground
3	9	5	$1 \mathrm{~B}_{0}$	Data Ports
4	3	9	2 A	Data Ports
6	1	10	$2 \mathrm{~B}_{0}$	Data Ports
7,8			NC	No Connect
9	4	1	$2 \mathrm{~B}_{1}$	Data Ports
10	2	2	2 S	Control Inputs
11,14	5	3	$\mathrm{~V}_{\mathrm{cc}}$	Power Supply
12	6	6	$1 \mathrm{~B}_{1}$	Data Ports
13	8	7	1 S	Control Inputs

Truth Table

Control Input (S)	Function
Low Logic Level	B_{0} connected to A
High Logic Level	B_{1} connected to A

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$V_{\text {cc }}$	Supply Voltage		-0.5	6.0	V
$\mathrm{V}_{\text {SW }}$	DC Switch Voltage ${ }^{(1)}$		-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage ${ }^{(1)}$		-0.5	6.0	V
$1 \mathrm{I}_{\mathrm{K}}$	Input Diode Current		-50		
	Switch Current			200	mA
	Peak Switch Current (Pulsed at 1 ms duration, <10\% duty cycle)			400	
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114		8000	V
		Charged Device Model, JESD22-C101		2000	V

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	1.65	5.50	V
$\mathrm{~V}_{\mathrm{CNTRL}}$	${\text { Control Input Voltage }{ }^{(2)}}^{\mathrm{V}_{\mathrm{SW}}}$	Switch Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$
T_{A}	Operating Temperature	0	V	

Note:
2. Unused control input must be held HIGH or LOW and it must not float.

DC Electrical Characteristics

Typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{V}_{\text {IH }}$	Input Voltage High		1.8 to 2.7				1.0		V
			2.7 to 3.6				2.0		
			4.5 to 5.5				2.4		
VIL	Input Voltage Low		1.8 to 2.7					0.4	V
			2.7 to 3.6					0.6	
			4.5 to 5.5					0.8	
I_{N}	Control Input Leakage	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	2.7 to 3.6				-1.0	1.0	$\mu \mathrm{A}$
			4.5 to 5.5				-1.0	1.0	
$I_{\text {NO(OFF), }}$ $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	Off Leakage Current of Port Bo and B_{1}	$\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V}, \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=1 \mathrm{~V}, 4.5 \mathrm{~V} \end{aligned}$	5.5	-2		2	-20	20	nA
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	On Leakage Current of Port A	$\mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V}, \mathrm{~B}_{0}$ or $\mathrm{B}_{1}=1 \mathrm{~V}, 4.5 \mathrm{~V}$ or Floating	5.5	-4		2	-40	40	nA
Ron	Switch On Resistance MicroPak ${ }^{(3)}$	$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V} \end{aligned}$	1.8		4.6				Ω
			2.7		2.6	4.0		4.3	
		$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=3.5 \mathrm{~V} \end{aligned}$	4.5		0.95	1.15		1.30	
	Switch On Resistance MSOP/TSSOP ${ }^{(3)}$	$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V} \end{aligned}$	2.7		2.8			4.5	
		$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=3.5 \mathrm{~V} \end{aligned}$	4.5		1.5			2.3	
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Matching Between Channels MicroPak ${ }^{(4)}$	$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{1}=3.5 \mathrm{~V} \end{aligned}$	4.5		0.06	0.12		0.15	Ω
	On Resistance Matching Between Channels MSOP / TSSOP ${ }^{(4)}$		4.5		0.7			0.3	
$\mathrm{R}_{\text {FLAt(ON) }}$	On Resistance Flatness ${ }^{(5)}$	$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \mathrm{~B}_{0} \text { or } \\ & \mathrm{B}_{\mathrm{I}}=0 \mathrm{~V}, 0.75 \mathrm{~V}, 1.5 \mathrm{~V} \end{aligned}$	1.8		3.0				Ω
			2.7		1.4				
		$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \\ & \mathrm{~B}_{0} \text { or } \mathrm{B}_{\mathrm{I}}=0 \mathrm{~V}, 1 \mathrm{~V}, \\ & 2 \mathrm{~V} \end{aligned}$	4.5		0.2	0.3		0.4	
Icc	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{lout}^{2}=0 \mathrm{~V} \end{aligned}$	3.6		0.1	0.5		1.0	$\mu \mathrm{A}$
			5.5		0.1	0.5		1.0	

Notes:

3. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
4. $\quad \Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ONmax}}-\mathrm{R}_{\mathrm{ON} \text { min }}$ measured at identical V_{CC}, temperature, and voltage.
5. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC Electrical Characteristics

Typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit	Figure
				Min.	Typ.	Max.	Min.	Max.		
ton	Turn-On Time	$\begin{aligned} & \mathrm{B}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	1.8 to 2.7		75				ns	Figure 6
			2.7 to 3.6			50		60		
		$\begin{aligned} & \mathrm{B}_{0} \text { or } \mathrm{B}_{1}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	4.5 to 5.5			35		40		
toff	Turn-Off Time	$\begin{aligned} & \mathrm{B}_{0} \text { or } B_{1}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	1.8 to 2.7		20				ns	Figure 6
			2.7 to 3.6			20		30		
		$\begin{aligned} & \mathrm{B}_{0} \text { or } \mathrm{B}_{1}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	4.5 to 5.5			15		20		
$\mathrm{t}_{\text {BBM }}$	Break- Before-Make Time	$\begin{array}{\|l\|} \hline \mathrm{B}_{0} \text { or } \mathrm{B}_{1}=1.5 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \hline \end{array}$	2.7 to 3.6				1		ns	Figure 7
		$\begin{aligned} & \mathrm{B}_{0} \text { or } \mathrm{B}_{1}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	4.5 to 5.5		20		1			
Q	Charge Injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	2.7 to 3.6		20				pC	Figure 9
			4.5 to 5.5		10					
OIRR	Off Isolation	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	2.7 to 3.6		-70				dB	Figure 8
			4.5 to 5.5		-70					
Xtalk	Crosstalk	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	2.7 to 3.6		-75				dB	Figure 8
			4.5 to 5.5		-75					
BW	$-3 \mathrm{db}$ Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	2.7 to 3.6		200				MHz	Figure 11
			4.5 to 5.5		200					
THD	Total Harmon Distortion	$\begin{aligned} & R_{L}=600 \Omega, V_{I N}=0.5 V_{P P} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	2.7 to 3.6		0.002				\%	Figure 12
			4.5 to 5.5		0.002					

Capacitance

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit	Figure
				Min.	Typ.	Max.		
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	0		3.5		pF	Figure 10
CofF	B Port Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	4.5		12.0		pF	Figure 10
Con	A Port On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	4.5		40.0		pF	Figure 10

AC Loadings and Waveforms

C_{L} Includes Fixture and Stray Capacitance

Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

Figure 6. Turn On / Off Timing

C_{L} Includes Fixture and Stray Capacitance
Figure 7. Break Before Make Timing

Figure 8. Off Isolation and Crosstalk

AC Loadings and Waveforms (Continued)

Figure 9. Charge Injection

Figure 10. On / Off Capacitance Measurement Setup

Figure 11. Bandwidth

Figure 12. Harmonic Distortion

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 2009.

E. LANDPATTERN STANDARD: SOP65P640X110-14M.
F. DRAWING FILE NAME: MKT-MTC14rev7.

REVISIONS			
NBR	DESCRIPTION	DATE	BY/APP'D
B	REDREW FORMER NSC DWG	07JUN2006	H.ALLEN
2	- REMOVE SITE ADDRESS AND CHANGE REVISION TO NUMERICAL \& CHANGED LAND PATTERN TIPC, - TO NUMERICAL \& CHANGED LAND PATTERNTO IPC. : CHANGE LEAD WIDTH RROMO.2TMAA	20AUG2009	KHLEE/FSSZ
3	- REVERT LEAD WIDTH To 0.27MAX.	24SEP2009	KHLEE/FSsz

TOP VIEW

NOTES: UNLESS OTHERWISE SPECIFIED
A. THIS PACKAGE CONFORMS TO JEDEC MO-187

VARIATION BA.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES AS PER ASME Y14.5-1994.
E. LAND PATTERN AS PER IPC7351\#SOP50P490X110-10AN
F. FILE NAME: MKT-MUA10AREV3

LAND PATTERN RECOMMENDATION

DETAIL A
SCALE 20:1

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

