ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
FSA2259 Low-Voltage, Dual-SPDT (0.8』) Analog Switch with 16kV ESD

Features

- 0.8Ω Typical On Resistance (Ron) for +3.0 V Supply
- 0.40Ω Maximum Ron Flatness for +3.0 V Supply
- -3db Bandw idth: > 50MHz
- Low Icct Current Over an Expanded Control Input Range
- Packaged in 10 -Lead UMLP ($1.4 \times 1.8 \mathrm{~mm}$)
- Pow er-Off Protection on Common Ports
- Broad $V_{c c}$ Operating Range: 1.65 to 4.4 V
- ESD HBM JEDEC: JESD22-A114
- $/ \mathrm{O}$ to GND: 8.5 kV
- Pow er to GND: 16.0kV

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description

The FSA2259 is a high-performance, dual, Single Pole Double Throw (SPDT) analog sw itch that features low Ron of 0.8Ω (typical) at 3.0 V Vcc . The FSA2259 operates over a wide Vcc range of 1.65 V to 4.4 V and is designed for break-before-make operation. The select input is TTL-level compatible.
The FSA2259 features very low quiescent current even when the control voltage is lower than the V_{cc} supply. This feature suits mobile handset applications by allowing direct interface with baseband processor general-purpose VOs with minimal battery consumption.
rdering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSA2259UMX	JT	-40 to $+85^{\circ} \mathrm{C}$	10 -Lead, Quad, Ultrathin Molded Leadless Package (UMLP), $1.4 \times 1.8 \mathrm{~mm}$

Analog Symbol

Pin Configuration

Figure 2. 10-Pin UMLP (Top Through View)

Pin Description

Pin\#	Name	Description
1	$\mathrm{Vcc}_{\mathrm{cc}}$	Supply Voltage
2	$1 \mathrm{~B}_{1}$	Data Ports
3	1 A	Data Ports
4	S 1	Sw itch Select Pins
5	$1 \mathrm{~B}_{0}$	Data Ports
6	GND	Ground
7	$2 \mathrm{~B}_{0}$	Data Ports
8	S 2	Sw itch Select Pins
9	2 A	Data Ports
10	$2 \mathrm{~B}_{1}$	Data Ports

Truth Table

Control Input, Sn	Function
LOW Logic Level	nB0 Connected to nA
HIGH Logic Level	nB1 Connected to nA

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Units
Vcc	Supply Voltage		-0.5	5.5	V
Vsw	Sw itch //O Voltage ${ }^{(1)}$	1B0, 1B1, 2B0, 2B1, 1A, 2A Pins	-0.5	$\mathrm{V}_{\mathrm{cc}}+0.3$	V
VIN	Control Input Voltage ${ }^{(1)}$	S1, S2	-0.5	5.5	V
IK	Input Clamp Diode Current			-50	mA
Isw	Sw itch VO Current (Continuous)			350	mA
ISWPEAK	Peak Sw itch Current (Pulsed at 1ms Duration, <10\% Duty Cycle)			500	mA
Tstg	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
TJ	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature (Soldering, 10 seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JEDEC: JESD22-A114	//O to GND		8.5	kV
		Pow er to GND		16.0	
		All Other Pins		8.0	
	Charged Device Model, JEDEC: JESD22-C101			2.0	kV

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Units
V_{CC}	Supply Voltage	1.65	4.40	V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Sw itch I/O Voltage	0	$\mathrm{~V}_{\mathrm{cc}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbol	Parameter	Conditions	Vcc (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{V}_{\text {IH }}$	Control Input Voltage High		3.60 to 4.30				1.7		V
			2.70 to 3.60				1.5		
			2.30 to 2.70				1.4		
			1.65 to 1.95				0.9		
VIL	Control Input Voltage Low		3.60 to 4.30					0.7	V
			2.70 to 3.60					0.5	
			2.30 to 2.70					0.4	
			1.65 to 1.95					0.4	
$\mathrm{IIN}^{\text {N }}$	$\begin{array}{\|l} \hline \text { Control Input Leakage } \\ (\mathrm{S} 1, \mathrm{~S} 2) \end{array}$	$\mathrm{V}_{1 \mathrm{~N}}=0$ to V_{cc}	1.65 to 4.30				-0.5	0.5	$\mu \mathrm{A}$
$I_{\text {No(ofF), }}$ $1_{\text {nc(OFF) }}$	Off Leakage Current of Port nB0 and nB1	$\mathrm{nA}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}-0.3 \mathrm{~V}$ $\mathrm{nB0}$ or $\mathrm{nB1}=\mathrm{V}_{\mathrm{cc}}-0.3 \mathrm{~V}$, 0.3 V , or Floating Figure 4	1.95 to 4.30	-10		10	-50	50	nA
$I_{\text {AOS })}$	On Leakage Current of PortnA	$\mathrm{nA}=0.3 \mathrm{~V}, \mathrm{~V} \mathrm{cc}-0.3 \mathrm{~V}$ $\mathrm{nB0} \text { or } \mathrm{nB} 1=\mathrm{V}_{\mathrm{cc}}-0.3 \mathrm{~V} \text {, }$ 0.3 V , or Floating Figure 5	1.95 to 4.30	-20		20	-100	100	nA
$\mathrm{I}_{\text {IfF }}$	Power-Off Leakage Current (Common Port Only 1A, 2A)	$\begin{aligned} & \text { Common Port (} 1 \mathrm{~A}, \\ & 2 \mathrm{~A}), \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { to } 4.3 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V} \text { nB0, } \\ & \mathrm{nB} 1=\text { Floating } \end{aligned}$	OV					± 1	$\mu \mathrm{A}$
Ron	Switch On Resistance ${ }^{(2,5)}$	$\mathrm{I}_{\mathrm{ON}}=100 \mathrm{~mA}, \mathrm{nB0}$ or nB1 $=0.7 \mathrm{~V}, 3.6 \mathrm{~V}$ Figure 3	4.30		0.50			1.00	Ω
		Ion $=100 \mathrm{~mA}, \mathrm{nB0}$ or $n B 1=0.7 \mathrm{~V}, 2.3 \mathrm{~V}$ Figure 3	3.00		0.80			1.20	
		Figure 3	2.30		1.10				
		$\mathrm{I}_{\mathrm{on}}=100 \mathrm{~mA}, \mathrm{nB0}$ or $\mathrm{nB} 1=0 \mathrm{~V}, 0.7 \mathrm{~V}, 1.65 \mathrm{~V}$ Figure 3	1.65		1.50				
$\Delta \mathrm{R}_{\text {on }}$	On Resistance Matching Between Channels ${ }^{(3,5)}$	$\begin{aligned} & l_{\mathrm{on}}=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=0.7 \mathrm{~V} \end{aligned}$	4.30		0.08			0.25	Ω
			3.00		0.20			0.25	
			2.30		0.40				
			1.65		0.50				
$\mathrm{R}_{\text {flat(on) }}$	On Resistance Flatness ${ }^{(4,5)}$	$\begin{aligned} & \mathrm{l}_{\text {out }}=100 \mathrm{~mA}, \mathrm{nBO} \text { or } \\ & \mathrm{nB} 1=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}} \end{aligned}$	4.30					0.4	Ω
			3.00					0.4	
			2.30		0.9				
			1.65		1.2				
I_{cc}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {cc, }}$, $\mathrm{l}_{\text {out }}=0$	4.30	-100		100	-500	500	nA
$\mathrm{I}_{\text {cct }}$	Increase in I lcc per Input	Input at 2.6 V	4.30		3			7	$\mu \mathrm{A}$
		Input at 1.8V			7			15	

Notes:

2. On resistance is determined by the voltage drop betw een A and B pins at the indicated current through the switch.
3. $\Delta R_{O N}=R_{o n} \max -R_{o n}$ min measured at identical $V_{c c}$, temperature, and voltage.
4. Flatness is defined as the difference betw een the maximum and minimum value of on resistance (Ron) over the specified range of conditions.
5. Guaranteed by characterization, not production tested for $\mathrm{V}_{\mathrm{cc}}=1.65-3.0 \mathrm{~V}$.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit	Figure
				Min.	Typ.	Max.	Min.	Max.		
ton	Turn-On Time	$\begin{aligned} & \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.60 to 4.30			55		60	ns	Figure 6 Figure 7
			2.70 to 3.60			60		65		
			2.30 to 2.70			65		70		
			1.65 to 1.95		70					
toff	Turn-Off Time	$\begin{aligned} & \mathrm{nB0} \text { or } \\ & \text { nB1=1.5V, } \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.60 to 4.30			30	5	35	ns	
			2.70 to 3.60			35	5	40		
			2.30 to 2.70			40	5	45		
			1.65 to 1.95		40					
$t_{\text {BBM }}$	Break- Before-Make Time ${ }^{(6)}$	$\begin{aligned} & \mathrm{nB0} \text { or } \\ & \mathrm{nB1}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.60 to 4.30		15		2		ns	Figure 8
			2.70 to 3.60		15		2			
			2.30 to 2.70		15		2			
			1.65 to 1.95		16		2			
Q	Charge Injection ${ }^{(6)}$	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega \end{aligned}$	1.65 to 4.30		25				pC	Figure 12
OIRR	Off Isolation ${ }^{(6)}$	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	1.65 to 4.30		-80				dB	Figure 10
Xtalk	Crosstalk ${ }^{(6)}$	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	1.65 to 4.30		-100				dB	Figure 11
BW	$\begin{aligned} & -3 \mathrm{db} \\ & \text { Bandw idth }{ }^{(6)} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{Cl}_{\text {L }}=0 \mathrm{pF}$	1.65 to 4.30		>50				MHz	Figure 9
THD+N	Total Harmonic Distortion + Noise ${ }^{(6)}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega, \\ & \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{pp}} \end{aligned}$	1.65 to 4.30		. 06				\%	Figure 15

Notes:
6. Guaranteed by characterization, not production tested

Capacitance

All capacitance specifications are guaranteed by characterization and are not production tested.

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit	Figure
				Min.	Typ.	Max.		
$\mathrm{CIN}_{\text {I }}$	Control Pin Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	0		1.5		pF	Figure 13
Coff	B Port Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.3		30		pF	Figure 13
Con	A Port On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.3		50		pF	Figure 14

Test Diagrams

Figure 3. On Resistance

Figure 5. On Leakage

**Each switch port is tested separately.

Figure 4. Off Leakage (Ports Tested Separately)

Figure 6. Test Circuit Load

Figure 7. Turn-On / Turn-Off Waveforms

Test Diagrams (Continued)

R_{L} and C_{L} are functions of the application environment (50,75 , or 100Ω).
C_{L} includes test fixture and stray capacitance.

Figure 8. Break-Before-Make Interval Timing

C_{L} includes test fixture and stray capacitance.
Figure 9. Bandwidth

Figure 10. Channel Off Isolation

Test Diagrams (Continued)

environment (50, 75 , or 100Ω)
CROSSTALK $=20 \log \left(\mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}\right)$
Figure 11. Adjacent Channel Crosstalk

Figure 12. Charge Injection Test

Figure 13. Channel Off Capacitance

Figure 14. Channel On Capacitance
 environment (see AC Tables for specific values).

Figure 15. Total Harmonic Distortion

Physical Dimensions

BOTTOM VIEW

NOTES:

OPTIONAL MINIMIAL TOE LAND PATTERN

DETAIL A
PIN \#1 TERMINAL SCALE: 2X
A. DIMENSIONS ARE IN MILLIMETERS.
B. DIMENSIONS AND TOLERANCES PER

ASME Y14.5M, 1994
C. DRAWING FILENAME: UMLP10Arev2

Figure 16. 10-Lead Quad Ultrathin Molded Leadless Package (UMLP)

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee reg arding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. Amer ic an Technical Support: 800-282-9855 Toll Free ON Semic onductor Website: www.onsemi.com USA/Canada.
Eur ope, Middle East and Afr ica Technical Support: Or der Literature: http://wmw.onsemi.com/orderlit Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

