ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

FSA2270T Low-Voltage, Dual-SPDT (0.4 Ω) Analog Switch with Negative Swing Audio Capability

Features

- 0.4 Ω Typical On Resistance (R_{ON}) for +3.0 V Supply
- 0.25 Ω Maximum Ron Flatness for +3.0 V Supply
- -3 db Bandwidth: > 50 MHz
- Low-I_{CCT} Current Over Expanded Control Input Range
- Packaged in 10-Lead UMLP
- Pow er-Off Protection on Common Ports
- Broad V_{CC} Operating Range: 1.65 to 4.3 V
- Noise Immunity Termination Resistors
- Low Electrostatic Discharge (ESD)
 - Human Body Model (JEDEC: JESD22-A114)

Pow er to GND
16 kV
VO to GND
All other pins
8 kV

- Charged Device Model (JEDEC: JESD22-A101)

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description

The FSA2270T is a high-performance, dual Single-Pole Double-Throw (SPDT) analog switch with negative swing audio capability. The FSA2270T features ultra-low R_{ON} of 0.4 Ω (typical) at 3.0 V V $_{CC}$. The FSA2270T operates over a wide V $_{CC}$ range of 1.65 V to 4.3 V, is fabricated with sub-micron CMOS technology to achieve fast switching speeds, and is designed for break-before-make operation. The select input is TTL-level compatible.

The FSA2270T features very low quiescent current even when the control voltage is lower than the $V_{\rm CC}$ supply. This feature suits mobile handset applications by allowing direct interface with baseband processor general-purpose I/Os with minimal battery consumption.

The FSA2270T includes termination resistors that improve noise immunity during overshoot excursions, off-isolation coupling, or "pop-minimization."

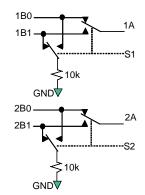


Figure 1. Analog Symbol

Ordering Information

Part Number	Top Mark	Package Description			
FSA2270TUMX	HK	10-Lead, Quad Ultrathin Molded Leadless Package (UMLP), 1.4 x 1.8 mm, 0.4 mm Pitch			

Pin Configuration

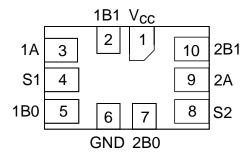


Figure 2. 10-Pin UMLP (Top Through View)

Pin Descriptions

Pin#	Name	Description
1	Vcc	Supply Voltage
3, 9	1A, 2A	Data Points
4, 8	S1, S2	Switch Select Pins
5, 7	1B0, 2B0	Data Ports
6	GND	Ground
2, 10	1B1, 2B1	Data Ports

Truth Table

Control Input, Sn	Function
LOW Logic Level	nB0 connected to nA; nB1 terminated to GND
HIGH Logic Level	nB1 connected to nA; nB0 terminated to GND

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. Functional operation above the recommended operating conditions is not implied. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. Absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Units
V _{CC}	Supply Voltage	-0.5	5.5	V	
Vsw	Sw itch I/O Voltage ⁽¹⁾	1B0, 1B1, 2B0, 2B1, 1A, 2A Pins	Vcc - 4.3	V _{CC} + 0.3	V
V _{CNTRL}	Control Input Voltage ⁽¹⁾	-0.5	V _{CC} + 0.3		
lık	Input Clamp Diode Current			-50	mA
Isw	Switch I/O Current (Continue	ous)		350	mA
ISWPEAK	Peak Switch Current (Pulsed	d at 1 ms Duration, <10% Duty Cycle)		500	mA
T_{STG}	Storage Temperature Range)	-65	+150	°C
TJ	Maximum Junction Tempera	ture		+150	°C
T_{L}	Lead Temperature Soldering	g, 10 Seconds		+260	°C
		Power to GND		16	kV
ESD	Human Body Model, JEDEC: JESD22-A114	VO to GND		11	kV
ESD	,	All Other Pins		8	kV
	Charged Device Model, JED		2	kV	

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
Vcc	Supply Voltage	1.65	4.30	V
V _{S1, S2}	Control Input Voltage	0	Vcc	V
Vsw	Sw itch I/O Voltage	V _{CC} - 4.3	Vcc	V
TA	Operating Temperature	-40	+85	°C

DC Electrical Characteristics

All typical values are for $V_{\text{CC}}\!=\!3.3~\text{V}$ at $T_{\text{A}}\!=\!25^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	V _{CC} (V)	T _A =+25°C			T _A =-40 to +85°C		Units
				Min.	Тур.	Max.	Min.	Max.	
			3.60 to 4.30				1.7		
V _{IH}	Input Valtage High		2.70 to 3.60				1.5		
V IH	Input Voltage High		2.30 to 2.70				1.4		V
			1.65 to 1.95				0.9		
			3.60 to 4.30					0.7	V
V _{IL}	Input Voltage Low		2.70 to 3.60					0.5	
V IL	input voltage Low		2.30 to 2.70					0.4	V
			1.65 to 1.95					0.4	
I _{IN}	Control Input Leakage (S1, S2)	V _{IN} =0 to V _{CC}	1.65 to 4.30				-0.5	0.5	μΑ
I _{A(ON)}	On Leakage Current of Port nA	nA=0.5 V, V_{CC} =0.5 V nB0 or nB1= V_{CC} -0.5 V, 0.5 V, or Floating Figure 5	1.95 to 4.30				-1	1	μA
l _{OFF}	Pow er-Off Leakage Current (Common Port Only 1A, 2A)	Common Port (1A, 2A), V_{IN} =0 V to 4.3 V, V_{CC} =0 V nB0, nB1=0 V or Floating	0				-45	45	μA
		l _{ON} =100 mA, nB0 or nB1=0.7 V, 3.6 V, 4.3 V Figure 3	4.30		0.30				
	Sw itch On Resistance ^(2,5)	l _{ON} =100 mA, nB0 or nB1=0.7 V, 3.6 V, 4.3 V Figure 3	3.00		0.40			0.80	Ω
R _{ON}		l_{ON} =100 mA, nB0 or nB1=0 V, 0.7 V, 1.6 V, 2.3 V Figure 3	2.30		0.52				
		l _{oN} =100 mA, nB0 or nB1=0 V, 0.7 V, 1.65 V Figure 3	1.65		1.00				
			4.30		0.04			0.13	
ΔR_{ON}	On Resistance Matching	I_{ON} =100 mA, nB0 or	3.00		0.06			0.13	Ω
ΔINON	Betw een Channels (3)	nB1=0.7 V	2.30		0.12				Ω
			1.65		1.00				
			4.30					0.25	
R _{FLAT(ON)}	On Resistance	I_{OUT} =100 mA, nB0 or	3.00					0.25	Ω
· YELA I (UN)	Flatness ⁽⁴⁾	nB1=0 V to V _{CC}	2.30		0.5				34
			1.65		0.6				
R_{TERM}	Internal Termination Resistors ⁽⁵⁾				10				kΩ
lcc	Quiescent Supply Current	V _{IN} =0 V or V _{CC} , I _{OUT} =0 mA	4.30	-100		100	-500	500	nA
		Input at 2.6 V			3.0			10.0	
Ісст	Increase in I _{CC} per Input	Input at 1.8 V	4.30		7.0				μΑ

Notes:

- 2. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
- 3. $\Delta R_{ON}=R_{ONmax}-R_{ONmin}$ measured at identical V_{CC} , temperature, and voltage.
- 4. Flatness is defined as the difference between the maximum and minimum value of on resistance (RoN) over the specified range of conditions.
- 5. Guaranteed by characterization, not production tested.

AC Electrical Characteristics

All typical value are for V_{CC} =3.3 V at T_{A} =25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{CC} (V)	-	Γ _A =+250	С	T _A =-40	to +85°C	Units	Figure	
Symbol	raiailletei	Conditions	VCC (V)	Min.	Тур.	Max.	Min.	Max.	Onits	riguie	
			3.60 to 4.30			60	15	65			
ton	Turn-On Time	nB0 or nB1=1.5 V,	2.70 to 3.60			65	15	70	ns	Figure 6	
tON		$R_L=50 \Omega$, $C_L=35 pF$	2.30 to 2.70			80	15	85	113	Figure 7	
			1.65 to 1.95		100						
			3.60 to 4.30			55	5	60			
t _{OFF}	Turn-Off Time	nB0 or nB1=1.5 V,	2.70 to 3.60			60	5	65	ns	Figure 6 Figure 7	
OFF		$R_L=50 \Omega$, $C_L=35 pF$	2.30 to 2.70			65	5	70	110		
			1.65 to 1.95		65						
	Break-Before- Make Time	nB0 or nB1=1.5 V, R _L =50 Ω, C _L =35 pF	3.60 to 4.30		3		1		ns	Figure 8	
t _{BBM}			2.70 to 3.60		5		2				
rBBM			2.30 to 2.70		10		2				
			1.65 to 1.95		15		2				
Q	Charge Injection	C_L =1.0 nF, V_S =0 V, R_S =0 Ω	1.65 to 4.30		25				рС	Figure 12	
OIRR	Off Isolation	$\begin{array}{l} \text{f=100 kHz,} \\ \text{R}_{\text{L}}\text{=50 }\Omega\text{, C}_{\text{L}}\text{=0 pF} \end{array}$	1.65 to 4.30		-70				dB	Figure 10	
Xtalk	Crosstalk	$f=100 \text{ kHz}, \\ R_L=50 \ \Omega, \ C_L=0 \ pF$	1.65 to 4.30		-70				dB	Figure 11	
BW	-3 db Bandwidth	$R_L=50 \Omega$, $C_L=0 pF$	1.65 to 4.30		>50		_		MHz	Figure 9	
THD	Total Harmonic Distortion	$\begin{array}{l} \text{f=20 Hz to 20 kHz,} \\ \text{R}_\text{L}\text{=}32\Omega,\text{V}_\text{IN}\text{=}2\text{V}_\text{pp} \\ \text{V}_\text{BIAS}\text{=}0\text{V} \end{array}$	1.65 to 4.30		.06				%	Figure 15	

Capacitance

Symbol	Parameter	Conditions	V _{CC} (V)	T _A =+25°C			Units	Figure
Symbol	raiametei	Conditions	VCC (V)	Min.	Тур.	Max.	Oilles	rigure
C _{IN}	Control Pin Input Capacitance	f=1 MHz	0		2.5		pF	Figure 13
C _{OFF}	B Port Off Capacitance	f=1 MHz	3.3		30		pF	Figure 13
Con	A Port On Capacitance	f=1 MHz	3.3		120		pF	Figure 14

Test Diagrams

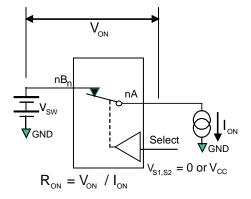
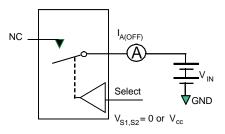



Figure 3. On Resistance

Each switch port is tested separately.

Figure 4. Off Leakage

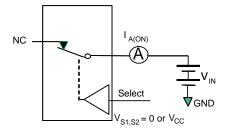


Figure 5. On Leakage

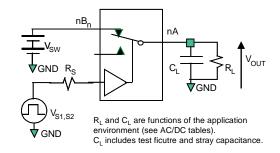


Figure 6. Test Circuit Load

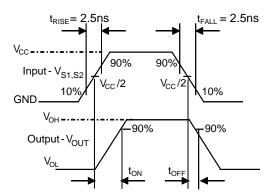


Figure 7. Turn-On / Turn-Off Waveforms

Test Diagrams (Continued)

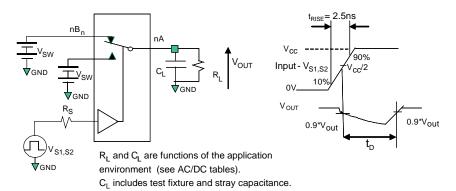


Figure 8. Break-Before-Make Interval Timing

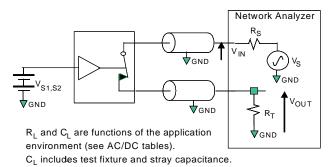


Figure 9. Bandwidth

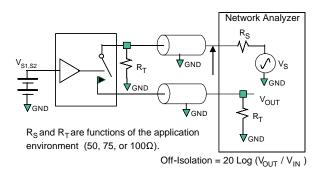


Figure 10. Channel Off Isolation

Test Diagrams (Continued)

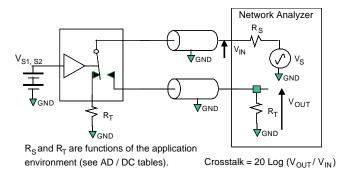


Figure 11. Adjacent Channel Crosstalk

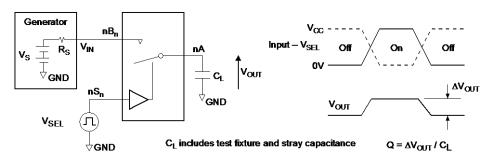


Figure 12. Charge Injection Test

Figure 13. Channel Off Capacitance

Figure 14. Channel On Capacitance

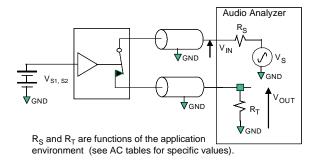


Figure 15. Total Harmonic Distortion

Physical Dimensions

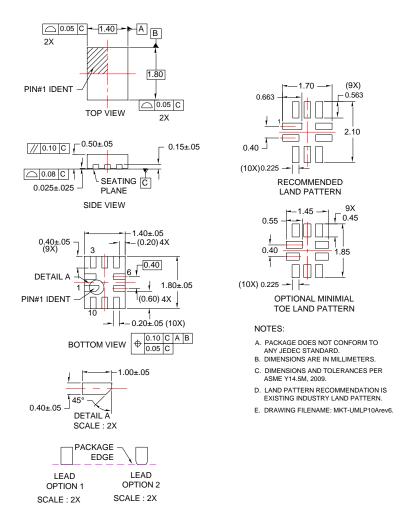


Figure 16. 10-Lead, Quad Ultrathin Molded Leadless Package (UMLP)

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Table 1. Nominal Values

JEDEC Symbol	Description	Nominal Values (mm)
A	Overall Height	0.5
A1	Package Standoff	0.026
A3	Lead Thickness	0.152
b	Lead Width	0.2
L	Lead Length	0.4
е	Lead Pitch	0.4
D	Body Length (Y)	1.8
E	Body Width (X)	1.4

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employ

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada.

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semic onductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G
PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX
XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10
RS22227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2
MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3
DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7
DG2535EDQ-T1-GE3 LTC201ACN#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12