

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA2380 - Low Ron (0.75Ω) 3:1 Negative Swing Audio Source Switch

Features

- $10 \mu \mathrm{~A}$ Maximum I Іст Current Over An Expanded Control Voltage Range ($\mathrm{V}_{\text {IN }}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.3 \mathrm{~V}$)
- Con Capacitance 70 pF Typical
- $\quad 0.75 \Omega$ Typical On Resistance (Ron)
- $1 \mathrm{Bn}, 2 \mathrm{Bn}$ Ports Support Negative Swing Audio to 2 V
- -3 db Bandwidth: $>120 \mathrm{MHz}$
- Low Power Consumption (1 $\mu \mathrm{A}$ maximum)
- Power-Off Feature for 1 A/2 A Pin ($\mathrm{I}_{\mathrm{N}}<2 \mu \mathrm{~A}$)
- Packaged in Pb-Free 14-Pin TSSOP and DQFN

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Ordering Information

Part Number	Top Mark	Packing Description
FSA2380BQX	2380	$14-$ Terminal Depopulated very thin Quad Flat-pack No leads (DQFN) $2.5 \times 3.0 \mathrm{~mm}$, JEDEC MO-241
FSA2380MTCX	FSA2380	$14-$ Lead Thin Shrink Small Outline Package (TSSOP) 4.4 mm wide, JEDEC MO-153

Analog Symbol

Figure 1. FSA2380 Analog Symbol

Pin Assignments

Figure 2. TSSOP-14 (Top Through View)

Figure 3. DQFN-14 (Top Through View)

Pin Descriptions

Name	Description
S0, S1	Switch Control Selects
$1 \mathrm{~A}, 2 \mathrm{~A}$	A Data Bus (Common)
$1 \mathrm{Bn}, 2 \mathrm{Bn}$	Multiplexed Source inputs

Truth Table

S1	S0	Function
LOW Logic Level	LOW Logic Level	Disconnected (Hi-Z)
LOW Logic Level	HIGH Logic Level	$1 \mathrm{~B} 0=1 \mathrm{~A} ; 2 \mathrm{~B} 0=2 \mathrm{~A}$
HIGH Logic Level	LOW Logic Level	$1 \mathrm{~B} 1=1 \mathrm{~A} ; 2 \mathrm{~B} 1=2 \mathrm{~A}$
HIGH Logic Level	HIGH Logic Level	$1 \mathrm{~B} 2=1 \mathrm{~A} ; 2 \mathrm{~B} 2=2 \mathrm{~A}$

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {cc }}$	Supply Voltage		-0.5	6.0	V
$\mathrm{V}_{\text {SW }}$	Switch I/O Voltage ${ }^{(1)}$	1Bn, 2Bn Pins	$\mathrm{V}_{\mathrm{cc}}-5.5$	$\mathrm{V}_{\mathrm{cc}}+0.3$	V
		1A, 2A Pins	$\mathrm{V}_{\mathrm{cc}}-5.5$	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage ${ }^{(1)}$ S0, S1 Pins		-0.5	6.0	V
I_{1}	Input Clamp Diode Current		-50		mA
Isw	Switch I/O Current (Continuous)			350	mA
ISWPEAK	Peak Switch Current (Pulsed at 1ms Duration, <10\% Duty Cycle)			500	mA
PD	Power Dissipation at $85^{\circ} \mathrm{C}$	DQFN-14		2.5	$\mu \mathrm{W}$
		TSSOP-14		2.5	$\mu \mathrm{W}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature (Soldering, 10 seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (JEDEC: JESD22-A114)	All Pins		5500	
		I/O to GND		8000	kV
		VCC to GND		8000	
	Charged Device Model (JEDEC-JESD22-C101)			2000	kV

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	2.7	5.0	V
$\mathrm{~V}_{\mathrm{CNTRL}}$	Control Input Voltage $\left(\mathrm{V}_{\mathrm{SO}: 51}\right)$	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Switch I/O Voltage	$\mathrm{V}_{\mathrm{CC}}-5.5$	$\mathrm{~V}_{\mathrm{CC}}$	
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (free air)	DQFN-14		145
		${ }^{\circ} \mathrm{C} / \mathrm{W}$		

DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
	Analog Signal Range			$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 5.5 \end{gathered}$		$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage					1.2	V
V_{IH}	Control Input Voltage HIGH		2.7 to 3.6	1.2			V
			3.6 to 4.3	1.5			
VIL	Control Input Voltage LOW		2.7 to 3.6			0.5	
			3.6 to 4.3			0.7	
I_{N}	Control Input Leakage	$\mathrm{V}_{\mathrm{IN}}=0$ to $\mathrm{V}_{\text {cc }}$	4.3			± 1	$\mu \mathrm{A}$
loff	Power Off Leakage Current (Common Port Only 1A, 2A)	$\begin{aligned} & \text { Common Port }(1 \mathrm{~A}, 2 \mathrm{~A}) \\ & \mathrm{V}_{\mathrm{SW}}=0 \text { to } 4.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	OV			± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {NO(OFF }}$	Off-Leakage Current of Port (1Bn, 2Bn)	$1 \mathrm{Bn}, 2 \mathrm{Bn}$ or $1 \mathrm{~A}, 2 \mathrm{~A}=$ $0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}-0.5 \mathrm{~V}$, or Floating	4.3	-50	10	50	nA
$\mathrm{l}_{\mathrm{NC}(\mathrm{ON})}$	On-Leakage Current of Port 1Bn, 2Bn	$\begin{aligned} & 1 \mathrm{Bn}, 2 \mathrm{Bn} \text { or } 1 \mathrm{~A}, \\ & 2 \mathrm{~A}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}-0.5 \mathrm{~V} \text {, } \\ & \text { or Floating } \end{aligned}$	4.3	-50	10	50	nA
R_{ON}	Switch On Resistance ${ }^{(2)}$	$\begin{aligned} & 1 \mathrm{Bn} \text { or } 2 \mathrm{Bn}=0 \mathrm{~V}, 0.7 \mathrm{~V} \text {, } \\ & 2.0 \mathrm{~V}, 2.7 \mathrm{~V} \text {; } \mathrm{lon}=- \\ & 100 \mathrm{~mA} \end{aligned}$ See Figure 7, Figure 8	2.70		0.75	2.00	Ω
$\Delta \mathrm{R}_{\text {ON }}$	Delta On Resistance ${ }^{(3)}$	$\begin{aligned} & 1 \mathrm{Bn} \text { or } 2 \mathrm{Bn}=0.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{ON}}=-100 \mathrm{~mA} \end{aligned}$	2.70		0.50		Ω
$\mathrm{R}_{\text {FLAt(ON) }}$	On Resistance Flatness ${ }^{(4)}$	$\begin{aligned} & 1 \mathrm{Bn} \text { or } 2 \mathrm{Bn}=0 \mathrm{~V}, 0.7 \mathrm{~V} \text {, } \\ & 2.0 \mathrm{~V}, 2.7 \mathrm{~V} \text {; } \\ & \text { lon }=-100 \mathrm{~mA} \\ & \text { See Figure } 7 \text {, Figure } 8 \end{aligned}$	2.7 to 4.3		0.23	0.40	Ω
lcc	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{SW}}=0 \text { or } \mathrm{V}_{\mathrm{CC}}-0.3 \\ & \mathrm{l} \text { lut }=0 \end{aligned}$	4.3		22	500	nA
$\mathrm{I}_{\text {cct }}$	Increate in Quiescent Supply Current per Control Voltage and V_{Cc}	$\mathrm{V}_{\text {CNTRL }}=2.6 \mathrm{~V}$	4.3		2.0	10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CNTRL }}=1.8 \mathrm{~V}$			6.5	15.0	

Notes:

2. Ron measured by the voltage drop between $1 \mathrm{Bn}(2 \mathrm{Bn})$ and $1 \mathrm{~A}(2 \mathrm{~A})$ pins at identical current through the switch. $R_{\text {on }}$ is determined by the lower of the voltage on the two pins.
3. Guaranteed by characterization, not production tested.
4. Flatness is defined as the difference between the maximum and minimum values of on resistance over the specified range of conditions.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ \\ +85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min.	Typ.	Max.	
ton	Turn-On Time S[0:1] to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{Bn}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ Figure 10, Figure 12	2.7 to 4.3		30	60	ns
toff	Turn-Off Time S[0:1] to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{Bn}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ Figure 10, Figure 12	2.7 to 4.3		22	45	ns
tpd	Propagation Delay ${ }^{(5)}$	$R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ Figure 13	3.3		0.25		ns
$\mathrm{t}_{\text {BbM }}$	Break-Before-Make ${ }^{(5)}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN} 1}=\mathrm{V}_{\mathrm{IN} 2}=\mathrm{V}_{\mathrm{IN} 3}=1.5 \mathrm{~V} \\ & \text { Figure } 11 \end{aligned}$	2.7 to 4.3	1	6		ns
Q	Charge Injection	$\begin{aligned} & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{OPEN} \\ & \text { Figure } 14 \end{aligned}$	2.7 to 4.3		9		pC
OIRR	Off-Isolation	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ Figure 4, Figure 16	2.7 to 4.3		-68		dB
Xtalk	Non-Adjacent Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ Figure 5, Figure 17	2.7 to 4.3		-60		dB
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{sw}}=0.5 \mathrm{Vp}, \\ & \text { Figure } 20 \end{aligned}$	2.7 to 4.3		0.01		\%
BW	-3 db Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0,5 \mathrm{pF}$ Figure 6, Figure 15	2.7 to 4.3		120		MHz

5. Guaranteed by characterization, not production tested.

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit
			Typical	
$\mathrm{Cl}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	2.75	pF
Con	A/B On Capacitance	$\begin{aligned} & V_{C C}=3.3 V ; S[0: 1]=01,10,11 ; \\ & f=1 \mathrm{MHz} \end{aligned}$ Figure 19	70	pF
Coffa	Port 1A, 2A Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~S}[0: 1]=00$ Figure 18	42	pF
Coffb	Port 1Bn, 2Bn Off Capacitance	$V_{C C}=3.3 V, S[0: 1]=00$ Figure 18	20	pF

Typical Characteristics

Figure 4. Off Isolation $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$

Figure 5. Non-Adjacent Crosstalk $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$

Frequency (MHz)
Figure 6. Bandwidth $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$

Figure 7. Switch On Resistance, $R_{\mathrm{ON}} \mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$

Test Diagrams

Figure 8. On Resistance

Figure 9. Off Leakage

R_{L} and C_{L} are functions of the application environment (see AC Tables for specific values) C_{L} includes test fixture and stray capacitance

Figure 10. AC Test Circuit Load

R_{L} and C_{L} are functions of the application
environment (see AC Tables for specific values)
C_{L} includes test fixture and stray capacitance

Figure 11. Break-Before-Make Timing

Test Diagrams (Continued)

Figure 12. Turn-On / Turn-Off Waveforms

Figure 13. Switch Propagation Delay Waveforms

Figure 14. Charge Injection Test

Test Diagrams (Continued)

 environment (see AC Tables for specific values)

Figure 15. Bandwidth

Figure 16. Channel Off Isolation

Figure 17. Non-Adjacent Channel-to-Channel Crosstalk

Test Diagrams (Continued)

Figure 19. Channel On Capacitance

Figure 20. Total Harmonic Distortion

RECOMMENDED LAND PATTERN

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AA
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
E. DRAWING FILENAME: MKT-MLP14Arev2.

BOTTOM VIEW

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

