

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA2467

0．4 $\mathbf{~ L o w - V o l t a g e ~ D u a l ~ D P D T ~ A n a l o g ~ S w i t c h ~}$

Features

－Typical 0.4Ω On Resistance（ R_{ON} ）for +2.7 V Supply
－Features Less then $12 \mu \mathrm{~A}$ Ісст Current when Sn Input is Lower than $V_{C C}$
－ 0.25Ω Maximum $R_{\text {ON }}$ Flatness for +2.7 V Supply
－ $3 \times 3 \mathrm{~mm}$ 16－Lead MLP Package
－ $1.8 \times 2.6 \mathrm{~mm} 16$－Lead UMLP Package
－Broad V_{Cc} Operating Range
－Low THD（0．02\％Typical for 32Ω Load）

Applications

－Cell Phone
－PDA
－Portable Media Player

Description

The FSA2467 is a dual Double－Pole，Double－Throw （DPDT）analog switch．The FSA2467 operates from a single 1.65 V to 4.3 V supply．The FSA2467 features an ultra－low on resistance of 0.4Ω at a +2.7 V supply and $25^{\circ} \mathrm{C}$ ．This device is fabricated with sub－micron CMOS technology to achieve fast switching speeds and is designed for break－before－make operation．

FSA2467 features very low quiescent current even when the control voltage is lower than the V_{CC} supply．This feature allows mobile handset applications direct interface with baseband processor general－purpose I／Os．

Ordering Information

Part Number	Top Mark	Package Description
FSA2467MPX	FSA	16－lead Molded Leadless Package（MLP），JEDEC MO－220， $3 \times 3 \mathrm{~mm}$ Square
	2467	GC
FSA2467UMX	16－lead Ultrathin Molded Leadless Package（UMLP）， $1.8 \times 2.6 \mathrm{~mm}$	

Application Diagram

Figure 1．Application Diagram

Pin Assignments

Figure 2. MLP (Top Through View)
Truth Table

Control Inputs	Function
LOW	nB_{0} Connected to nA
HIGH	nB_{1} Connected to nA

Figure 3. UMLP (Top View)

Analog Symbol

Figure 4. Analog Symbol

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{CC}	Supply Voltage		-0.5	5.0	V
V_{S}	Switch Voltage		-0.5	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IN }}$	Input Voltage		-0.5	5.0	V
$\mathrm{I}_{\text {IK }}$	Input Diode Current		-50		mA
$\mathrm{I}_{\text {SW }}$	Switch Current			350	mA
$I_{\text {SWPEAK }}$	Peak Switch Current (Pulsed at 1ms duration, <10\% Duty Cycle)			500	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, Soldering 10 Seconds			+260	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114		5.5	kV

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	1.65	4.30	V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage ${ }^{(1)}$	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{S}	Switch Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Typical values are at 25으 unless otherwise specified.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =-40 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		Unit
				Min.	Typ.	Max.	Min	Max.	
V_{H}	Input Voltage High		4.3				1.4		V
			2.7 to 3.6				1.3		
			2.3 to 2.7				1.1		
			1.65 to 1.95				0.9		
$\mathrm{V}_{\text {IL }}$	Input Voltage Low		4.3					0.7	V
			2.7 to 3.6					0.5	
			2.3 to 2.7					0.4	
			1.65 to 1.95					0.4	
I_{N}	Control Input Leakage	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$ to V_{CC}	1.65 to 4.30				-0.5	0.5	$\mu \mathrm{A}$
$I_{\text {No(OFF) }}$ $I_{\text {NC(OFF) }}$	Off Leakage Current of Port nB_{0} and nB_{1}	$\mathrm{nA}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}-0.3 \mathrm{~V}$	1.95 to 4.30	-10		10	-50	50	nA
		$\begin{aligned} & \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}- \\ & 0.3 \mathrm{~V} \text { or floating } \end{aligned}$							
$I_{\text {AOON }}$	On Leakage Current of Port A	$n A=0.3 \mathrm{~V}, \mathrm{~V}_{\text {cc }}-0.3 \mathrm{~V}$	1.95 to 4.30	-10		10	-50	50	nA
		$\mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}^{-}}$ 0.3 V or Floating							
Ron	Switch On Resistance ${ }^{(2)}$	$\mathrm{I}_{\text {Out }}=100 \mathrm{~mA}$	4.3		0.4			0.6	Ω
		$\begin{aligned} & \mathrm{nB}_{0} \text { or } \mathrm{nB}_{1}=0 \mathrm{~V}, 0.8 \mathrm{~V}, \\ & 1.8 \mathrm{~V}, 2.7 \mathrm{~V} \end{aligned}$	2.7		0.4			0.6	
		$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \mathrm{nB}_{0} \text { or } \\ & \mathrm{nB} \mathrm{~B}_{1}=0 \mathrm{~V}, 0.7 \mathrm{~V}, 1.2 \mathrm{~V}, 2.3 \mathrm{~V} \end{aligned}$	2.3	0.55				0.95	
		$\begin{aligned} & \begin{array}{l} \text { lout }=100 \mathrm{~mA}, \mathrm{nB}_{0} \text { or } \\ \mathrm{nB}_{1}=1.0 \mathrm{~V} \end{array} \\ & \hline \end{aligned}$	1.8	0.8				2.0	
$\Delta \mathrm{R}_{\text {on }}$	On Resistance Matching Between Channels ${ }^{(3)}$	$\begin{aligned} & \mathrm{I}_{\text {out }}=100 \mathrm{~mA}, \mathrm{nB}_{0} \text { or } \\ & \mathrm{nB}_{1}=0.8 \mathrm{~V} \end{aligned}$	2.7	0.04				0.10	Ω
		$\begin{aligned} & \begin{array}{l} \text { lout }=100 \mathrm{~mA}, \mathrm{nB}_{0} \text { or } \\ \mathrm{nB}_{1}=0.7 \mathrm{~V} \end{array} \\ & \hline \end{aligned}$	2.3	0.03				0.10	
$\mathrm{R}_{\text {FLAt(ON) }}$	On Resistance Flatness ${ }^{(4)}$	$\begin{aligned} & \text { lout }=100 \mathrm{~mA}, \mathrm{~B}_{0} \text { or } \\ & \mathrm{nB}_{1}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	2.7					0.25	Ω
			2.3					0.3	
$\mathrm{I}_{\text {c }}$	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }} \mathrm{l}_{\text {Out }}=0 \mathrm{~V}$	4.3	-100		100	-500	500	nA
$\mathrm{I}_{\text {çt }}$	Increase in I_{CC} Current per Control Voltage	$\mathrm{V}_{1 \mathrm{IN}}=1.8 \mathrm{~V}$	4.3		7	12		15	$\mu \mathrm{A}$
		$\mathrm{V}_{1 \mathrm{IN}}=2.6 \mathrm{~V}$	4.3		3	6		7	

Notes:

2. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
3. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON} \max }-\mathrm{R}_{\mathrm{ON} \text { min }}$ measured at identical V_{CC}, temperature and voltage.
4. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC Electrical Characteristics

Typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Condition	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85 \div \mathrm{C} \end{gathered}$		Unit	Figure
				Min.	Typ.	Max.	Min.	Max.		
ton	Turn-On Time	$\mathrm{nB0}$ or $\mathrm{nB1} 1=1.5 \mathrm{~V}$	3.6 to 4.3			50		60	ns	Figure 8
		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{L}=35 \mathrm{pF}$	2.7 to 3.6			65		75		
			2.3 to 2.7			80		90		
$\mathrm{t}_{\text {ofF }}$	Turn-Off Time	$\mathrm{nB0}$ or $\mathrm{nB1} 1=1.5 \mathrm{~V}$	3.6 to 4.3			32		40	ns	Figure 8
		$\mathrm{R}_{L}=50 \Omega, \mathrm{C}_{L}=35 \mathrm{pF}$	2.7 to 3.6			42		50		
			2.3 to 2.7			52		60		
$\mathrm{t}_{\text {BBM }}$	Break-BeforeMake Time	$\mathrm{nB0}$ or $\mathrm{nB1} 1=1.5 \mathrm{~V}$	3.6 to 4.3		12				ns	Figure 9
		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	2.7 to 3.6		15					
			2.3 to 2.7		20					
Q	Charge Injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	3.6 to 4.3		15				pC	Figure 11
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	2.7 to 3.6		10					
		$\begin{array}{\|l} \hline \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega \\ \hline \end{array}$	2.3 to 2.7		8					
OIRR	Off Isolation	$\begin{aligned} & \mathrm{f}=100 \mathrm{KHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.6 to 4.3		-75				dB	Figure 10
			2.7 to 3.6		-75					
			2.3 to 2.7		-75					
Xtalk	Crosstalk	$\begin{aligned} & f=100 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	3.6 to 4.3		-75				dB	Figure 10
			2.7 to 3.6		-75					
			2.3 to 2.7		-75					
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	2.3 to 4.3		85				MHZ	Figure 13
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}_{\mathrm{PP}}, \\ & \mathrm{f}=20 \text { to } 20 \mathrm{kHZ} \end{aligned}$	3.6 to 4.3		0.02				\%	Figure 14
		$\begin{aligned} & R_{L}=32 \Omega, V_{\text {IN }}=2 V_{\text {PP }}, \\ & \mathrm{f}=20 \text { to } 20 \mathrm{kHZ} \end{aligned}$	2.7 to 3.6		0.02					
		$\begin{aligned} & R_{\mathrm{L}}=32 \Omega, V_{\text {IN }}=2 V_{\text {PP }}, \\ & \mathrm{f}=20 \text { to } 20 \mathrm{kHZ} \end{aligned}$	2.3. to 2.7		0.02					

Capacitance

Symbol	Parameter	Condition	$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{T}_{\mathbf{A}}=\mathbf{+ 2 5 0} \mathbf{C}$ Typical	Unit	Figure
$\mathrm{C}_{\mathbb{N}}$	Control Pin Input Capacitance	$\mathrm{f}=1 \mathrm{MHZ}$	0	1.5	pF	Figure 8
$\mathrm{C}_{\text {OFF }}$	B Port Off Capacitance	$\mathrm{f}=1 \mathrm{MHZ}$	3.3	32	pF	Figure 8
$\mathrm{C}_{\text {ON }}$	A Port On Capacitance	$\mathrm{f}=1 \mathrm{MHZ}$	3.3	118	pF	Figure 8

Typical Applications

Figure 5. R_{ON} at $2.7 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$

$\mathrm{FCH}=418500 \mathrm{mOhms}$
- $25^{\circ} \mathrm{C}$
VSWEEP $=1.425 \mathrm{~V}$
Fon $=431.500 \mathrm{mOhm}$

85 C
VSVEEP=650000ni $\mathrm{F}_{\mathrm{Cl}}=470.400 \mathrm{mOhms}$

Figure 6. R_{ON} at $2.3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$

Figure 7. R_{ON} at $1.8 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$

AC Loadings and Waveforms

Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

Figure 8. Turn-On / Turn-Off Timing

C_{L} Includes Fixture and Stray Capacitance

Figure 9. Break-Before-Make Timing

Figure 10. Off Isolation and Crosstalk

AC Loadings and Waveforms (Continued)

Figure 11. Charge Injection

Figure 12. On / Off Capacitance Measurement Setup

Figure 13. Bandwidth

Figure 14. Harmonic Distortion

Package Dimensions

RECOMMENDED LAND PATTERN

BOTTOM VIEW
NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WEED-Pending, DATED pending
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
D. DIMENSIONS ARE EXCLUSIVE OF BURS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

MLP16BrevB

Figure 15. 16-Lead, Molded Leadless Package (MLP), JEDEC MO-220 3x3mm Square
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packaging/3x3MLP16 Pack TNR.pdf.

Package Dimensions

NOTES:
A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.
E. DRAWING FILENAME: MKT-UMLP16Arev4.
F. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

Figure 16. 16-Lead, Ultrathin Molded Leadless Package (UMLP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

FAIRCHILD
SEMICONDUCTOR*
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

$2 \mathrm{Cool}{ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {(1) }}$
AccuPower ${ }^{\text {TM }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	the
AX-CAP ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {TM }}$	P wer
BitSic ${ }^{\text {m }}$	GreenBridge ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	
Build it Now ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$
CorePLUS ${ }^{\text {TM }}$	Green FPS $^{\text {TM }}$ e-Series ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {TM }}$
CorePOWER ${ }^{\text {TM }}$	Gmax ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
CROSSVOLT ${ }^{\text {m }}$	GTO ${ }^{\text {™ }}$	$\bigcirc)^{\text {m }}$	TINYOPTO ${ }^{\text {m }}$
CTL ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {™ }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{KW}$ at a time ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {m }}$
DEUXPEED ${ }^{\text {® }}$	Making Small Speakers Sound Louder	SmartMax ${ }^{\text {TM }}$	TinyWire ${ }^{\text {m }}$
Dual $\mathrm{CoOl}^{\text {™ }}$	${ }_{\text {a }}^{\text {and Better }}$ M ${ }^{\text {a }}$	SMART START ${ }^{\text {TM }}$	TranSiC ${ }^{\text {Tm }}$
EfficientMax ${ }^{\text {TM }}$	MICROCOUPLER ${ }^{\text {™ }}$	Solutions for Your Success ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
ESBC'm	MicroFET ${ }^{\text {m }}$	STEALTH ${ }^{\text {TM }}$	TRUECURRENT μ SerDes
$\Gamma^{\text {® }}$	MicroPak ${ }^{\text {™ }}$	SuperFET ${ }^{\text {® }}$	W
Fairchild ${ }^{\text {® }}$	MicroPak2 ${ }^{\text {TM }}$	SuperSOTM-3	SerDes
Fairchild Semiconductor ${ }^{(®)}$	MillerDrive ${ }^{\text {M }}$	SuperSOT ${ }^{\text {TM-6 }}$ -	UHC ${ }^{\text {® }}$
FACT Quiet Series ${ }^{\text {TM }}$	MotionMax ${ }^{\text {m }}$	SuperSOT ${ }^{\text {Tm-8 }}$	Ultra FRFET ${ }^{\text {m }}$
FACT ${ }^{\text {® }}$	Motion-SPM ${ }^{\text {m/ }}$	SupreMOS ${ }^{\text {® }}$	UniFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	mWSaver ${ }^{\text {mam }}$	SyncFET ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$
FastvCore ${ }^{\text {Tm }}$	OPTOLOGIC ${ }^{\text {® }}$	Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {Tm }}$
FETBench ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {® }}$	$\square \mathrm{SGENSRML}^{\text {G }}$	VoltagePlus ${ }^{\text {TM }}$
FlashWriter ${ }^{\text {® }}$			XS ${ }^{\text {TM }}$
FPS ${ }^{\text {TM }}$	\square		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, ww.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

