Low-Power, Dual SIM Card Analog Switch

FSA2567

Description

The FSA2567 is a bi-directional, low-power, dual double-pole, double-throw (4PDT) analog switch targeted at dual SIM card multiplexing. It is optimized for switching the WLAN-SIM data and control signals and dedicates one channel as a supply-source switch.

The FSA2567 is compatible with the requirements of SIM cards and features a low on capacitance (CON) of 10 pF to ensure high-speed data transfer. The $\mathrm{V}_{\text {SIM }}$ switch path has a low R_{ON} characteristic to ensure minimal voltage drop in the dual SIM card supply paths.

The FSA2567 contains special circuitry that minimizes current consumption when the control voltage applied to the SEL pin is lower than the supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$. This feature is especially valuable in ultra-portable applications, such as cell phones; allowing direct interface with the general-purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Features

- Low On Capacitance for Data Path: 10 pF Typical
- Low On Resistance for Data Path: 6Ω Typical
- Low On Resistance for Supply Path: 0.4Ω Typical
- Wide V_{CC} Operating Range: 1.65 V to 4.3 V
- Low Power Consumption: $1 \mu \mathrm{~A}$ Maximum
- $15 \mu \mathrm{~A}$ Maximum $\mathrm{I}_{\mathrm{CCT}}$ Over Expanded Voltage Range $\left(\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.3 \mathrm{~V}\right)$
- Wide -3 db Bandwidth: $>160 \mathrm{MHz}$
- Packaged in:
- Pb-free 16-Lead MLP \& 16-Lead UMLP
- 3 kV ESD Rating, $>12 \mathrm{kV}$ Power/GND ESD Rating

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

GX, FSA2567 = Device Code
\$Y $=$ onsemi Logo
\&Z $\quad=$ Assembly Plant Code
\&2 $=2$-Digit Date Code
\&K \quad 2-Digits Lot Run Traceability Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Part Number	Top Mark	Operating Temperature Range	Package	Shipping †
FSA2567MPX	FSA2567	-40 to $+85^{\circ} \mathrm{C}$	16-Lead, Molded Leadless Package (MLP) Quad, JEDEC MO-220, 3 mm Square	$3000 /$ Tape \& Reel
FSA2567UMX	GX		16-Lead, Quad, Ultrathin Molded Leadless Package (UMLP), $1.8 \times 2.6 \mathrm{~mm}$	$5000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. Analog Symbol

PIN ASSIGNMENTS

Figure 2. Pad Assignment MLP16 (Top Through View)

Figure 3. Pad Assignment UMLP16 (Top Through View)

PIN DESCRIPTION

Pin No.	
nDAT, nRST, nCLK	Multiplexed Data Source Inputs
$\mathrm{n} \mathrm{V}_{\text {SIM }}$	Multiplexed SIM Supply Inputs
$\mathrm{V}_{\text {SIM, }}$ DAT, RST, CLK	Common SIM Ports
Sel	Switch Select

TRUTH TABLE

SeI	
Logic LOW	Function
Logic HIGH	2DAT $=\mathrm{DAT}, 1 \mathrm{DST}, 2 \mathrm{RST}=\mathrm{RST}, 1 \mathrm{RLT}, 2 \mathrm{CLK}=\mathrm{CLK}, 1 \mathrm{~V}_{\mathrm{SIM}}=\mathrm{V}_{\mathrm{SIM}}$

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Supply Voltage		-0.5	+5.5	V
$\mathrm{V}_{\text {CNTRL }}$	DC Input Voltage (Sel) (Note 1)		-0.5	V_{CC}	V
$\mathrm{V}_{\text {SW }}$	DC Switch I/O Voltage (Note 1)		-0.5	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
I_{IK}	DC Input Diode Current		-50	-	mA
$\mathrm{I}_{\text {SIM }}$	DC Output Current - $\mathrm{V}_{\text {SIM }}$		-	350	mA
Iout	DC Output Current - DAT, CLK, RST		-	35	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JEDEC: JESD22-A114	All Pins	-	3	kV
		I/O to GND	-	12	
	Charged Device Model, JEDEC: JESD22-C101		-	2	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage	1.65	4.30	V
$\mathrm{~V}_{\text {CNTRL }}$	Control Input Voltage (Sel) (Note 2)	0	$\mathrm{~V}_{\text {CC }}$	V
$\mathrm{V}_{\text {SW }}$	Switch I/O Voltage	-0.5	$\mathrm{~V}_{\text {CC }}$	V
$\mathrm{I}_{\text {SIM }}$	DC Output Current - $\mathrm{V}_{\text {SIM }}$	-	150	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Current - DAT, CLK, RST	-	25	mA
TA	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
2. The control input must be held HIGH or LOW; it must not float.

DC ELECTRICAL CHARACTERISTICS (All typical values are at $25^{\circ} \mathrm{C}, 3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ unless otherwise specified.)

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
V_{IK}	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	2.7	-	-	-1.2	V
V_{IH}	Input Voltage High		1.65 to 2.3	1.1	-	-	V
			2.7 to 3.6	1.3	-	-	
			4.3	1.7	-	-	
VIL	Input Voltage Low		1.65 to 2.3	-	-	0.4	V
			2.7 to 3.6	-	-	0.5	
			4.3	-	-	0.7	
I_{IN}	Control Input Leakage	$\mathrm{V}_{\text {SW }}=0$ to $\mathrm{V}_{\text {CC }}$	4.3	-1	-	1	$\mu \mathrm{A}$
Inc(off), $I_{\text {no(off) }}$	Off State Leakage	nRST, nDAT, nCLK, nV ${ }_{\text {SIM }}=0.3 \mathrm{~V}$ or 3.6 V Figure 10	4.3	-60	-	60	nA
$\mathrm{R}_{\text {OND }}$	Data Path Switch On Resistance (Note 3)	$\mathrm{V}_{\mathrm{SW}}=0,1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-20 \mathrm{~mA}$ Figure 9	1.8	-	7.0	12.0	Ω
		$\mathrm{V}_{\mathrm{SW}}=0,2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-20 \mathrm{~mA}$ Figure 9	2.7	-	6.0	10.0	
Ronv	$\mathrm{V}_{\text {SIM }}$ Switch On Resistance (Note 3)	$\mathrm{V}_{\mathrm{SW}}=0,1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-100 \mathrm{~mA}$ Figure 9	1.8	-	0.5	0.7	Ω
		$\mathrm{V}_{\mathrm{SW}}=0,2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-100 \mathrm{~mA}$ Figure 9	2.7	-	0.4	0.6	
$\Delta \mathrm{R}_{\text {OND }}$	Data Path Delta On Resistance (Note 4)	$\mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-20 \mathrm{~mA}$	2.7	-	0.2	-	Ω
$I_{\text {cc }}$	Quiescent Supply Current	$\mathrm{V}_{\text {CNTRL }}=0$ or $\mathrm{V}_{\text {CC }}$, $\mathrm{I}_{\text {OUT }}=0$	4.3	-	-	1.0	$\mu \mathrm{A}$
${ }^{\text {CCT }}$	Increase in IcC Current Per Control Voltage and V_{CC}	$\mathrm{V}_{\text {CNTRL }}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	4.3	-	5.0	10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CNTRL }}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	4.3	-	7.0	15.0	$\mu \mathrm{A}$

3. Measured by the voltage drop between nDAT, nRST, nCLK and relative common port pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the relative ports.
4. Guaranteed by characterization.

AC ELECTRICAL CHARACTERISTICS (All typical values are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.)

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
$\mathrm{t}_{\text {OND }}$	Turn-On Time Sel to Output (DAT, CLK, RST)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{SW}}=1.5 \mathrm{~V} \end{aligned}$ Figure 11, Figure 12	1.8 (Note 5)	-	65	95	ns
			2.7 to 3.6	-	42	60	ns
$\mathrm{t}_{\text {OFFD }}$	Turn-Off Time Sel to Output (DAT, CLK, RST)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{SW}}=1.5 \mathrm{~V} \\ & \text { Figure 11, Figure } 12 \end{aligned}$	1.8 (Note 5)	-	30	50	ns
			2.7 to 3.6	-	20	40	ns
tonv	Turn-On Time Sel to Output (VSIM)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V} \mathrm{SW}=1.5 \mathrm{~V} \end{aligned}$ Figure 11, Figure 12	1.8 (Note 5)	-	55	80	ns
			2.7 to 3.6	-	35	55	ns
toffV	Turn-Off Time Sel to Output (VSIM)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{SW}}=1.5 \mathrm{~V} \\ & \text { Figure } 11 \text {, Figure } 12 \end{aligned}$	1.8 (Note 5)	-	35	50	
			2.7 to 3.6	-	22	40	ns
$t_{\text {PD }}$	Propagation Delay (Note 5) (DAT, CLK, RST)	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ Figure 11, Figure 13	3.3	-	0.25	-	ns
$\mathrm{t}_{\text {BBMD }}$	Break-Before-Make (Note 5) (DAT, CLK, RST)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{SW} 1}=\mathrm{V}_{\mathrm{SW}}=1.5 \mathrm{~V} \\ & \text { Figure } 15 \end{aligned}$	2.7 to 3.6	3	18	-	ns
$t_{\text {bBMV }}$	Break-Before-Make (Note 5) ($\mathrm{V}_{\text {SIM }}$)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{SW} 1}=\mathrm{V}_{\mathrm{SW} 2}=1.5 \mathrm{~V} \\ & \text { Figure } 15 \end{aligned}$	2.7 to 3.6	3	12	-	ns
Q	Charge Injection (DAT, CLK, RST)	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \end{aligned}$	2.7 to 3.6	-	10	-	pC
OIRR	Off Isolation (DAT, CLK, RST)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$ Figure 17	2.7 to 3.6	-	-60	-	dB
Xtalk	Non-Adjacent Channel Crosstalk (DAT, CLK, RST)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$ Figure 18	2.7 to 3.6	-	-60	-	dB
BW	-3 db Bandwidth (DAT, CLK, RST)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ Figure 16	2.7 to 3.6	-	475	-	MHz

5. Guaranteed by characterization.

CAPACITANCE

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	1.5	-	pF
Cond	RST, CLK, DAT On Capacitance (Note 6)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, Figure 20	-	10	12	
Conv	$\mathrm{V}_{\text {SIM }}$ On Capacitance (Note 6)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, Figure 20	-	110	150	
Coffd	RST, CLK, DAT Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, Figure 19	-	3	-	
CoffV	$\mathrm{V}_{\text {SIM }}$ Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, Figure 19	-	40	-	

6. Guaranteed by characterization.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Off Isolation

Figure 7. Crosstalk

Figure 8. Bandwidth

TEST DIAGRAMS

Figure 9. On Resistance

Figure 10. Off Leakage

Figure 12. Turn-On / Turn-Off Waveforms

Figure 11. AC Test Circuit Load

Figure 13. Propagation Delay

Figure 14. Charge Injection

TEST DIAGRAMS (Continued)

Figure 15. Break-Before-Make Interval Timing

Off isolation $=20$ Log ($\left.\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
Figure 17. Channel Off Isolation

Figure 16. Bandwidth

Crosstalk $=20$ Log ($\left.\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
Figure 18. Non-Adjacent Channel-to-Channel Crosstalk

Figure 19. Channel Off Capacitance

Figure 20. Channel On Capacitance

WQFN16 3x3, 0.5P
CASE 510BS
ISSUE O
DATE 31 AUG 2016

| DOCUMENT NUMBER: | 98AON13630G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WQFN16 3X3, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

UQFN16 1.8x2.6, 0.4P
CASE 523BF ISSUE O

BOTTOM VIEW | ϕ | 0.10 | C | A | B |
| :--- | :--- | :--- | :--- | :--- |
| | 0.05 | C | | |

NOTES:

A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
E. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

| DOCUMENT NUMBER: | 98AON13709G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UQFN16 1.8x2.6, 0.4P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

