

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA3357

Low Voltage SP3T Analog Switch （3：1 Multiplexer／Demultiplexer）

General Description

The FSA3357 is a high performance，single－pole／triple－throw （SP3T）Analog Switch or 3：1 Multiplexer／Demultiplexer．The device is fabricated with advanced sub－micron CMOS technol－ ogy to achieve high speed enable and disable times and low On Resistance．The break before make select circuitry prevents disruption of signals on the B_{0}, B_{1} ，or B_{2} Ports due to the switches temporarily being enabled during select pin switching． The device is specified to operate over the 1.65 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operating range．The control input tolerates voltages up to 5.5 V independent of the V_{Cc} operating range．

Features

－Useful in both analog and digital applications
■ Space saving US8 8－lead surface mount package
■ Low On Resistance；＜ 9Ω on typ＠3．3V V ${ }_{\text {CC }}$
\square Broad V_{CC} operating range； 1.65 V to 5.5 V
■ Rail－to－Rail signal handling
\square Power down high impedance control input
－Overvoltage tolerance of control input to 7.0 V
－Break before make enable circuitry
－ 250 MHz －3dB bandwidth
■ Space saving Pb－Free MicroPak ${ }^{\text {™ }}$ packaging
Applications
－Cell Phone
－PDA
\square Video

Ordering Code：

Product Order Number	Package Number	Code Top Mark	Package Description	Supplied As
FSA3357K8X	MAB08A	A357	8－Lead US8，JEDEC MO－187，Variation CA 3．1mm Wide	3k Units on Tape and Reel
FSA3357L8X	MAC08A	FE	Pb－Free 8－Lead MicroPak，1．6 mm Wide	5k Units on Tape and Reel

[^1]Analog Symbols

(Top View)
Pin Assignments for MicroPak

Connection Diagram

Pin Descriptions

Pin Names	Description
$A_{1}, B_{0}, B_{1}, B_{2}$	Data Ports
S_{1}, S_{2}	Control Input

Function Table

$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	Function
0	0	No Connection
1	0	$\mathrm{~B}_{0}$ Connected to A
0	1	$\mathrm{~B}_{1}$ Connected to A
1	1	$\mathrm{~B}_{2}$ Connected to A

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage ($\mathrm{V}_{\text {S }}$) (Note 2)	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ +0.5 \mathrm{~V} \end{array}$
DC Input Voltage (V_{IN}) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{1 /}$)	
@ (I_{K}) $\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	-50 mA
DC Output Current (lout)	128 mA
DC V_{CC} or Ground Current ($\mathrm{I}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{GND}}$)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature under Bias (T_{J})	$150^{\circ} \mathrm{C}$
Junction Lead Temperature (T_{L})	
Power Dissipation (P_{D}) @ $+85^{\circ} \mathrm{C}$	180 mW

Recommended Operating Conditions (Note 3)

Supply Voltage Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	1.65 V to 5.5 V
Control Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to V_{CC}
Switch Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V}$ to $10 \mathrm{~ns} / \mathrm{V}$
\quad Control Input $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	$250^{\circ} \mathrm{C} / \mathrm{W}$
\quad MicroPak 8L Package	$224^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed

Note 3: Control inputs must be held HIGH or LOW, they must not float.

DC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Typ	Max	Min	Max		
V_{IH}	HIGH Level Input Voltage	$\begin{gathered} 1.65-1.95 \\ 2.3-5.5 \end{gathered}$	$\begin{gathered} 0.75 \mathrm{~V}_{\mathrm{CC}} \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$			$\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		V	
V_{IL}	LOW Level Input Voltage	$\begin{gathered} 1.65-1.95 \\ 2.3-5.5 \end{gathered}$			$\begin{gathered} 0.25 \mathrm{~V}_{\mathrm{CC}} \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		$\begin{gathered} 0.25 \mathrm{~V}_{\mathrm{CC}} \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V	
I_{N}	Input Leakage Current	0-5.5			± 0.1		± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
IofF	OFF State Leakage Current	1.65-5.5			± 0.1		± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B}_{\mathrm{n}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{R}_{\text {ON }}$	Switch On Resistance (Note 4)	4.5		5.0	7.0		7.0	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$
				6.0	12.0		12.0		$\mathrm{V}_{1 \mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$
				7.0	15.0		15.0		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$
		3.0		6.5	9.0		9.0		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$
				9.0	20.0		20.0		$\mathrm{V}_{1 \mathrm{~N}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$
		2.3		8.0	12.0		12.0		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$
				11.0	30.0		30.0		$\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$
		1.65		10.0	20.0		20.0		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$
				17.0	50.0		50.0		$\mathrm{V}_{\text {IN }}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current All Channels ON or OFF	5.5			1.0		10.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {OUT }}=0 \end{aligned}$
ASR	Analog Signal Range	V_{CC}	0.0		V_{CC}	0.0	V_{CC}	V	
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match Between Channels (Note 4)(Note 5)(Note 6)	4.5		0.15				Ω	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=3.15$
		3.0		0.22					$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=2.1$
		2.3		0.31					$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.6$
		1.65		0.62					$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.15$
$\mathrm{R}_{\text {flat }}$	On Resistance Flatness (Note 4)(Note 5)(Note 7)	5.0		6.0				Ω	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$
		3.3		12.0					$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$
		2.5		40.0					$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$
		1.8		140.0					$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$

DC Electrical Characteristics
 (Continued)

Note 4: Measured by the voltage drop between A and B_{n} pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B_{n} Ports).

Note 5: Parameter is characterized but not tested in production.
Note 6: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ min measured at identical V_{CC}, temperature and voltage levels.
Note 7: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

AC Electrical Characteristics

Note 8: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance)

Note 9: Guaranteed by Design.
Note 10: Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{Bn}}\right]$
Capacitance (Note 11)

Symbol	Parameter	Typ	Max	Units	Conditions	Figure
Number						

Note 11: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested in production.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

FIGURE 3. Break Before Make Interval Timing

AC Loading and Waveforms (Continued)

FIGURE 4. Charge Injection Test

FIGURE 5. Off Isolation

FIGURE 7. Channel Off Capacitance

FIGURE 6. Crosstalk

FIGURE 8. Channel On Capacitance

FIGURE 9. Bandwidth

Tape and Reel Specification
TAPE FORMAT for US8

Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
K 8 X	Leader (Start End)	125 (typ)	Empty	Sealed
	Carrier	250	Filled	Sealed
	Trailer (Hub End)	$75($ typ $)$	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)

REEL DIMENSIONS inches (millimeters)

Tape Size	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{N}	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	$0.331+0.059 /-$ 0.000 (177.8)	(1.50)	(13.00)
(20.20)	(55.00)	0.567	W1 $8.40+1.50 /-0.00)$	(14.40)	$(\mathrm{W} 1+2.00 /-1.00)$			

TAPE FORMAT for MicroPak

Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
L8X	Leader (Start End)	$125(\mathrm{typ})$	Empty	Sealed
	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	$75($ typ $)$	Empty	Sealed

REEL DIMENSIONS inches (millimeters)

Tape Size	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{N}	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	$0.331+0.059 /-0.000$	0.567	$\mathrm{~W} 1+0.078 /-0.039$
	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	$(8.40+1.50 /-0.00)$	(14.40)	$(\mathrm{W} 1+2.00 /-1.00)$

Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead US8, JEDEC MO-187, Variation CA 3.1 mm Wide Package Number MAB08A

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product develop- ment. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been dis- continued by Fairchild Semiconductor. The datasheet is printed for ref- erence information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

[^1]: Pb－Free package per JEDEC J－STD－020B．

