ON Semiconductor

Is Now

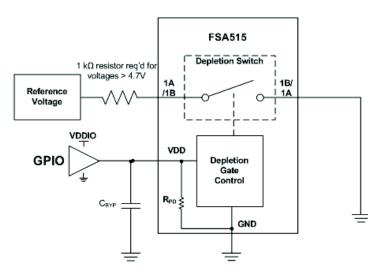
Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

5 V SPST Depletion Switch with Negative Swing

Description


The FSA515 is a high-performance single-pole single-throw (SPST) depletion switch. The depletion technology allows the device to conduct signals when there is no V_{DD} is available and to isolate signals when V_{DD} is present. The FSA515 is 5.5 V tolerant and can pass or isolate negative signal swings down to -3.0 V.

Features

- SPST Depletion Switch
- Normally Closed when $V_{DD} < 0.5 V$
- V_{SW} : -3.0 V to +5.5 V
- R_{ON}: 0.7 Ω (Typical)
- R_{FLAT} : 1.1 m Ω (Typical)

Typical Applications

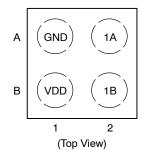
- Mobile Accessories, Adapters, and Cables
- Phones, Tablets, and Laptops
- Headsets

ON Semiconductor®

www.onsemi.com

WLCSP4 CASE 567VT

MARKING DIAGRAM



VM	= Specific Device Code
XX	= 2-digit Lot Run Code
YY	= 2-digit Date Code

= 1-digit Plant Code

Ζ

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
FSA515UCX	WLCSP4 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. PIN FUNCTION DESCRIPTION

Pin No. (WLCSP4)	Pin Name	Description
A1	GND	Ground
A2	1A	A-Port of Switch 1 (Normally Closed)
B1	VDD	Supply Voltage (Switch is closed when Low)
B2	1B	B-Port of Switch 1 (Normally Closed)

Table 2. SWITCH TRUTH TABLE

VDD	Switch State
Low	ON (Conducting)
High	OFF (Isolating)

Table 3. RECOMMENDED EXTERNAL COMPONENT

Component	Description	Vendor	Parameter	Min	Тур	Unit
C _{BYP}	0402, 1 nF, 10%, 6.3 V, X7R	Kemet C0402C102K9RACTU	С	0.65	1	nF
	0201, 1 nF, 10%, 6.3 V, X7R	AVX 02016C102KAT2A				

Table 4. MAXIMUM RATINGS

	Rating		Symbol	Value	Unit
Supply Voltage			V _{DD}	-0.5 to 6.0	V
Switch Voltage Range	DC Switch I/O Voltage (Swit	tch Conducting)	V _{SW(ON)}	-3.6 (AC) to 6.0	V
	DC Switch I/O Voltage (Swit	tch Isolated)	V _{SW(OFF)}	-3.6 (AC) to 6.0	V
Maximum DC Switch I/O Cu	n DC Switch I/O Current I _{SW} 350			mA	
Maximum Peak Switch I/O Current -Pulsed at 1ms duration, <10% duty cycle		ISWPEAK	500	mA	
Maximum Junction Tempera	ture		T _{J(max)}	150	°C
Storage Temperature Range			TSTG	-65 to 150	°C
ESD Capability (Note 2)	Human Body Model		ESDHBM	4	kV
	Charged Device Model		ESDCDM	2	kV
	IEC 61000-4-2 System	Contact	ESDIEC	8	kV
		Air Gap	1	15	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

 This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per ANSI,ESDA,JEDEC JS-001-2012 ESD Charged Device Model tested per According to "EIA/JESD22-C101 Level III" Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78

Table 5. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, WLCSP4 Thermal Resistance, Junction-to-Air (Note 3)	$R_{ hetaJA}$	77.4	°C/W

3. JEDEC Standard, Still Air, 4-layer board with vias

Table 6. RECOMMENDED OPERATING RANGES

	Rating	Symbol	Min	Мах	Unit
Supply Voltage	Isolating	V _{DD (OFF)}	2.5	5.5	V
	Conducting	V _{DD (ON)}	0	0.5	V
Switch Voltage Range	Isolating	V _{SW(OFF)}	-3.0 (Vpk; AC)	4.7	V
	Isolating (requires 1 k Ω (typ) in series with source)		4.7	5.5	
	Conducting	V _{SW(ON)}	-3.0 (Vpk; AC)	4.7	V
	$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $				
Ambient Temperature	•	T _A	-40	85	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 7. ELECTRICAL CHARACTERISTICS Unless otherwise specified, typical values are for $T_A=25$ °C, $V_{DD}=0$ V

Parameter	Test Con	Test Conditions		Min	Тур	Max	Unit
SWITCH DC CHARACTERISTICS							
Switch Off Leakage Current	$V_{DD} = 5 V$	1A = 5.5 V	I _{OFF}		0.01		μA
	1B = GND	1A = -1.5 V			-0.65		
	V _{DD} = 3.3 V 1B = GND	1A = 1.4 V (Note 5)			0.01	1.5	
Switch On Resistance	I _{SW} = 100 mA, V _{SW}	I_{SW} = 100 mA, V_{SW} =–1.5 V to +1.5 V			0.7	1.1	Ω
	I _{SW} = 100 mA, V _{SV}	I_{SW} = 100 mA, V_{SW} = 0 V to +5.5 V			0.7	1.1	
On Resistance Flatness	I_{SW} = 100 mA, V_{SW}	I_{SW} = 100 mA, V_{SW} =–1.5 V to +1.5 V			1.1		mΩ
	I _{SW} = 100 mA, V _{SV}	_V = 0 V to +5.5 V]		1.1		

SWITCH AC CHARACTERISTICS

Total Harmonic Distortion Plus Noise	V_{SW} = 1 V_{RMS} , Ground Centered R _L = 32 Ω , f = 1 kHz		THD+N	-93	dB
Off Isolation Rejection Ratio	V _{SW} = 1 V _{RMS} , Ground Centered	f = 1 kHz	OIRR	-116	dB
	$R_L = 32 \Omega$	f = 20 kHz	1	-97	
Bandwidth	V_{SW} = 200 mV _{PP} , Ground Centered R _L = 50 Ω		BW	367	MHz

SUPPLY CURRENTS

Peak Startup Supply Current	$V_{DD} = 0 V \text{ to } 5.5 V$	I _{DDT}		3.0		mA
Quiescent Current	V _{DD} = 5.5 V	I _{DD}	-	30		μΑ
Disable Current	$V_{DD} \leq 0.2 V$	I _{DIS}		0.05	0.50	μΑ

CONTROL LOGIC

V _{DD} Pull-Down Resistance	$V_{DD} \leq 0.2 V$	R _{PD}		5.8		MΩ
V _{DD} High Voltage		V _{DDH}	2.5			V
V _{DD} Low Voltage		V _{DDL}			0.5	V

TIMING

Switch Turn-off Time	$R_L{=}1~k\Omega,~C_L{=}10~pF,~V_{DD}$ = 0.0 V to 3.0 V V_{SW} = 5.0V, Figure 1	tOFF	85	μs
Switch Turn-on Time	R_L =1 kΩ, C_L=10 pF, V_{DD} = 3.0 V to Hi–Z, C_{BYP} = 1 nF, V_{SW} = 5.0 V, Figure 1	t _{ON}	250	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at $T_J = T_A = 25^{\circ}C$. 5. Maximum is guaranteed at 25°C.

6. For reference only - guaranteed by design.

FSA515

Table 7. ELECTRICAL CHARACTERISTICS Unless otherwise specified, typical values are for $T_A=25^{\circ}C$, $V_{DD}=0$ V

	1 7 71			, 66		
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
CAPACITANCE						
On Capacitance	$R_L = 1 \ k\Omega$	C _{ON}		14		pF
Off Capacitance	V_{DD} = 5 V, R_L = 1 k Ω , C_L = 10 pF	C _{OFF}		17		pF
Supply Capacitance	V_{DD} = 5 V with 400 mV _{PP} , f = 1 MHz	C _{VDD}		17		pF
OSCILLATOR FREQUENCY						
On-Chip Oscillator Frequency (Note 6)	For reference only	fosc		110		kHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at $T_J = T_A = 25^{\circ}C$.

5. Maximum is guaranteed at 25°C.

6. For reference only - guaranteed by design.

Timing Diagram

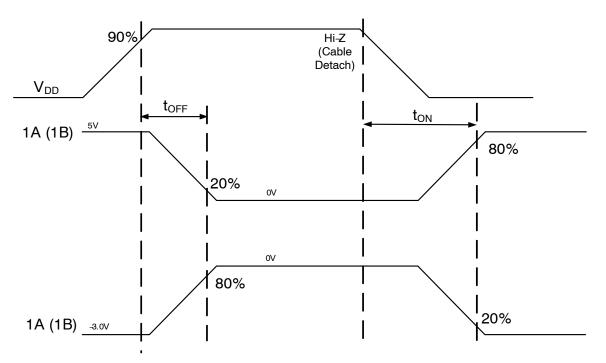
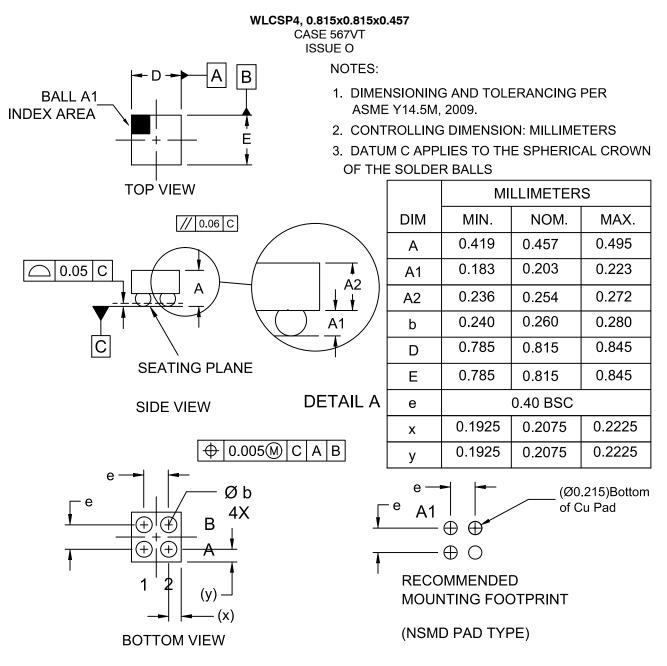



Figure 1. $t_{\text{ON}}\,/\,t_{\text{OFF}}\,V_{\text{CC}}$ to Output Timing

FSA515

PACKAGE DIMENSIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DI01500WL12