

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA553

Dual SPST Depletion Audio Switch with Negative Swing

Features

- Dual SPST Depletion Switch
- Normally Closed when VCC $<0.2 \mathrm{~V}$
- Switches Configurable through Select Pins
- $V_{\text {sw }}$: -1.5 V to +1.5 V
- Ron: 0.4Ω (Typical)
- $\quad R_{\text {FLAT }}<0.01 \Omega$ (Typical)
- THD+N: -104 dB (Typical)
- OIRR: -78 dB (Typical)

Figure 1. Application Block Diagram

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FSA553UCX	-40 to $85^{\circ} \mathrm{C}$	NG	$9-$ Ball WLCSP, 0.40 mm Pitch, $1.215 \times$ $1.385 \times 0.58 \mathrm{~mm}($ Nominal $)$	3000 Units on Tape \& Reel

Pin Configuration

Figure 2. Top Through View

Pin Descriptions

Pin \#	Name	Type	Description
A1	1 A	Depletion I/O	A-Port of Switch 1 (Normally Closed)
A3	1 B	Depletion I/O	B-Port of Switch 1 (Normally Closed)
C1	\#1S	Control	Select to Enable/Disable SW1 (Enable LOW)
A2	V cc	Power Supply / Control	Power Supply Input
B2	NC	No Connect	Do Not Connect
C2	GND	Ground	Ground
B1	2 A	Depletion I/O	A-Port of Switch 2 (Normally Closed)
B3	$2 B$	Depletion I/O	B-Port of Switch 2 (Normally Closed)
C3	\#2S	Control	Select to Enable/Disable SW2 (Enable LOW)

Table 1. Switch Truth Table

$\mathbf{V}_{\text {cc }}$	\#1S	\#2S	Switch 1	Switch 2
LOW	X	X	ON	ON
HIGH	HIGH	HIGH	OFF	OFF
HIGH	LOW	HIGH	ON	OFF
HIGH	HIGH	LOW	OFF	ON

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{Cc}	Supply/Control Voltage		-0.5	4.3	V
$\mathrm{V}_{\text {CNTRL }}$	Select Input Voltage	\#1S, \#2S	-0.5	4.3	V
$\mathrm{V}_{\text {SW(ON) }}$	DC Switch I/O Voltage (Switch Conducting)	1A, 1B, 2A, 2B	-2.0	2.0	V
$\mathrm{V}_{\text {SW(OFF) }}$	DC Switch I/O Voltage (Switch Isolated)	1A, 1B, 2A, 2B	-2.0	2.0	V
$I_{\text {sw }}$	Switch I/O Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ (Switch Conducting)		350	mA
ISWPEAK	Peak Switch Current	Pulsed at 1 ms Duration, <10\% Duty Cycle		500	mA
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	I/O Ports		7	kV
		All Other Pins		4	
	Charged Device Model, JEDEC: JESD22-C101			2	
	IEC 61000-4-2 System	Contact		8	
		Air Gap		15	
T_{A}	Absolute Maximum Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
Θ_{JA}	Thermal Resistance, Junction-to-Ambient	2S2P JEDEC std. PCB		97	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding these ratings or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit	
$\mathrm{V}_{\text {CC(ON) }}$	Supply Voltage with Depletion Switch Conducting (1A=1B; 2A=2B)	0	0.2	V	
$\mathrm{~V}_{\text {CC(OFF) }}$	Supply Voltage with Depletion Switch Isolated (1A $\neq 1 \mathrm{~B} ; 2 \mathrm{~A} \neq 2 \mathrm{~B} ;$ $\# 1 \mathrm{~S}=\# 2 \mathrm{~S}=\mathrm{HIGH})$	1.5	3.0	V	
$\mathrm{~V}_{\text {SW(ON) }}$	DC Switch I/O Voltage	Switch Conducting	-1.5	1.5	V
$\mathrm{~V}_{\text {SW(OfF) }}$	DC Switch I/O Voltage	Switch Isolated	-1.5	1.5	V
$\mathrm{~V}_{\text {CNTRL }}$	Select Input Voltage	$\# 1 \mathrm{~S}, \# 2 \mathrm{~S}$	0	3.0	V

DC Electrical Characteristics

Unless otherwise specified, typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$			Unit	
				Min.	Typ.	Max.			
$\mathrm{V}_{\mathrm{CC}(\mathrm{HYS})}$	Supply Voltage Hysteresis						450		mV
lon	Switch ON Leakage Current	$\begin{aligned} & \mathrm{nA}=-0.5 \mathrm{~V}, 0.5 \\ & \mathrm{nB}=\text { Float, \#1 } \end{aligned}$	$\begin{aligned} & \mathrm{V}, 1.5 \mathrm{~V},-1.5 \mathrm{~V}, \\ & \# 2 \mathrm{~S}=\text { Float } \end{aligned}$	0		0.1		$\mu \mathrm{A}$	
loff	Switch OFF Leakage Current	$\begin{aligned} & \mathrm{nA}=-0.5 \mathrm{~V}, 0.5 \\ & \mathrm{nB}=\mathrm{GND}, \# 1 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{V}, 1.5 \mathrm{~V},-1.5 \mathrm{~V}, \\ & \# 2 \mathrm{~S}=\mathrm{V}_{\mathrm{cc}} \end{aligned}$	1.8		0.5		$\mu \mathrm{A}$	
$\mathrm{I}_{\text {CCT }}$	Increase in I_{CC} for each Select Pin	$\begin{aligned} & \# 1 \mathrm{~S}=\mathrm{V}_{\mathrm{cc}}, \# 2 \mathrm{~S} \\ & \# 1 \mathrm{~S}=1.2 \mathrm{~V}, \# 2 \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{~V}, \\ & =\mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.0		7		$\mu \mathrm{A}$	
RoN	Switch On Resistance	$\mathrm{I}_{\text {Sw }}=100 \mathrm{~mA}$,	$w=-1.5 \mathrm{~V}$ to +1.5 V	0		0.40	0.80	Ω	
$\Delta \mathrm{R}_{\text {ON }}$	Switch On Resistance Difference, Channel to Channel	$\mathrm{I}_{\mathrm{sw}}=100 \mathrm{~mA}, \mathrm{~V}$	$w=-1.5 \mathrm{~V}$ to +1.5 V	0		0.01		Ω	
$\mathrm{R}_{\text {FLAT(ON) }}$	On Resistance Flatness	$\mathrm{I}_{\mathrm{sw}}=100 \mathrm{~mA}, \mathrm{~V}$	$w=-1.5 \mathrm{~V}$ to +1.5 V	0		0.01		Ω	
$\mathrm{R}_{\text {PD }}$	V ${ }_{\text {cc }}$ Pull-Down Resistance			<0.2		5.0		$\mathrm{M} \Omega$	
RPu	Select Pull-Up Resistance			<0.2		3.0		$\mathrm{M} \Omega$	
Icc	Quiescent Supply Current	\#1S=\#2S=0 V or Float	Switch Isolated	1.5-3.0		80		$\mu \mathrm{A}$	
			Switch Conducting	0.2		0.5			
V_{IH}	Select Pin Input High Voltage			1.5-3.0	1.2			V	
$\mathrm{V}_{\text {IL }}$	Select Pin Input Low Voltage			1.5-3.0			0.55	V	

AC Electrical Characteristics

Unless otherwise specified, typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Capacitance

Unless otherwise specified, typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
Con	On Capacitance	$\mathrm{V}_{\text {SW }}=400 \mathrm{mV} \mathrm{PP} \mathrm{f}=1 \mathrm{MHz}$,	0		21		pF
Coff	Off Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{SW}}=400 \mathrm{mV}_{\mathrm{PP}}, \mathrm{f}=1 \mathrm{MHz}, \\ & \# 1 \mathrm{~S}=\# 2 \mathrm{~S}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	1.8		25		pF
$\mathrm{C}_{\text {CTRL }}$	Select Pin Capacitance	\#nS=400 mV ${ }_{\text {PP }}$, f=1 MHz,	1.8		5		pF

Timing Diagrams

Figure 4. $\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\mathrm{ofF}} \mathrm{V}_{\mathrm{CC}}$ to Output Timing

Figure 5. ton/toff Select (\#nS) to Output Timing

Figure 6. OFF Isolation

Product-Specific Dimensions

\mathbf{E}	\mathbf{D}	\mathbf{X}	\mathbf{Y}
$1.215 \pm .03 \mathrm{~mm}$	$1.385 \pm .03 \mathrm{~mm}$	0.2075 mm	0.2925 mm

TOP VIEW

SIDE VIEWS
NOTES
A. NO JEDEC REGISTRATION APPLIES.

B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 2009.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. FOR DIMENSIONS D,E,X, AND Y SEE PRODUCT DATASHEET.
F. DRAWING FILNAME: MKT-UC009Ak rev3

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

