

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA6157 Low－R ${ }_{\text {ON }}$ SPDT（0．8 $)$ Negative－Swing Audio or Video Switch

Features

－ 0.8Ω Typical On Resistance（Ron）for＋2．7V Supply
－ 0.45Ω Maximum R ONN Flatness for +2.7 V Supply
－－3db Bandwidth：＞50MHz
－Low Icct Current Over an Expanded Control Input Range
－Packaged in Pb－free 6－Lead MicroPak ${ }^{\text {TM }}$ （ $1.0 \times 1.4 \mathrm{~mm}$ ）
－Power－Off Protection on All I／O Ports
－Broad V_{CC} Operating Range： 1.65 to 4.3 V
－HBM JEDEC：JESD22－A114
－I／O to GND：12kV
－Power to GND： 16 kV

Applications

－Cell Phone，PDA，Digital Camera，and Notebook
－LCD Monitor，TV，and Set－top Box

Ordering Information

Part Number	Top Mark	Eco Status	Package Description
FSA6157L6X	GT	Green	6 －Lead，MicroPak ${ }^{\text {TM }}, 1.0 \mathrm{~mm}$ wide，JEDEC MO－255

For Fairchild＇s definition of Eco Status，please visit：http：／／www．fairchildsemi．com／company／green／rohs green．html．

Analog Symbol

Description

The FSA6157 is a high－performance，Single Pole Double Throw（SPDT）analog switch that features a low RoN of 0.8Ω（typical）at 2.7 V supply．The FSA6157 operates over a wide V_{cc} range of 1.65 V to 4.3 V and is designed for break－before－make operation．The select input is TTL－ level compatible．
The FSA6157 features very low quiescent current even when the control voltage is lower than the V_{cc} supply． This feature suits mobile handset applications by allowing direct interface with baseband processor general－purpose I／Os with minimal battery consumption．

IMPORTANT NOTE：

For additional performance information，please contact analogswitch＠fairchildsemi．com．

Pin Assignments

Figure 2. Pin Assignments for 6-Lead MicroPak ${ }^{\text {M }}$

Pin Descriptions

Name	Description
$\mathrm{A}, \mathrm{B}_{0}, \mathrm{~B}_{1}$	Data Ports
S	Switch Select Pin

Truth Table

Control Input, S	Function
LOW	B0 connected to A
HIGH	B1 connected to A

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Units
Vcc	Supply Voltage		-0.5	4.6	V
$\mathrm{V}_{\text {SW }}$	Switch I/O Voltage ${ }^{(1)}$	B0, B1, A Pins	$\mathrm{V}_{\mathrm{cc}}-5.5 \mathrm{~V}$	4.6	V
Vsw-Sw	Switch I/O to Switch I/O Voltage Delta (Off State) ${ }^{(1)}$	B0, B1, A Pins		5.5	V
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage ${ }^{(1)}$	S	-0.5	4.6	V
I_{1}	Input Clamp Diode Current			-50	mA
Isw	Switch I/O Current (Continuous)			350	mA
ISWPEAK	Peak Switch Current (Pulsed at 1ms Duration, <10\% Duty Cycle)			500	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (JEDEC: JESD22-A114)	I/O to GND		12	kV
		Power to GND		16	
		All Other Pins		8	
	Charge Device Model (JEDEC: JESD22-C101)			2	

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V_{CC}	Supply Voltage	1.65	4.3	V
$\mathrm{~V}_{\mathrm{CNTRL}}{ }^{(2)}$	Control Input Voltage - Select Pin	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Switch I/O Voltage	$\mathrm{V}_{\mathrm{CC}}-4.3 \mathrm{~V}$	4.3	V
$\mathrm{~V}_{\mathrm{SW}-\mathrm{SW}}$	Switch I/O Voltage to Switch I/O Voltage (Off-State)		4.6	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

Note:
2. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit
				Min.	Тур.	Max.	Min.	Max.	
	Analog Signal Range			$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}- \\ & 4.3 \mathrm{~V} \end{aligned}$		V_{cc}			V
$V_{\text {IK }}$	Clamp Diode Voltage		3.00					-1.2	V
$\mathrm{V}_{\text {IH }}$	Input Voltage High		3.60 to 4.30				1.4		V
			2.70 to 3.60				1.3		
			2.30 to 2.70				1.3		
			1.65 to 1.95				0.9		
$\mathrm{V}_{\text {IL }}$	Input Voltage Low		3.60 to 4.30					0.7	V
			2.70 to 3.60					0.4	
			2.30 to 2.70					0.4	
			1.65 to 1.95					0.4	
I_{1}	Control Input Leakage (S)	$\mathrm{V}_{\text {IN }}=0$ to V_{CC}	4.30				-1	1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{NO}(\text { (OFF), }}$ $\mathrm{I}_{\mathrm{NC}(\text { (OFF) }}$	Off Leakage Current of Port B0 and B1	$\mathrm{A}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}-0.5 \mathrm{~V}$ B 0 or $\mathrm{B} 1=\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}$, 0.5 V , or Floating; Figure 4	1.95 to 4.30	-100		100	-500	500	nA
$\mathrm{I}_{\text {A(ON) }}$	On Leakage Current of Port A	$\mathrm{A}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}-0.5 \mathrm{~V}$ B 0 or $\mathrm{B} 1=\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}$, 0.5 V , or Floating; Figure 5	4.30	-100		100	-250	250	nA
loff	Power-Off Leakage Current (All I/O Ports)	$\mathrm{V}_{\mathrm{A}, \mathrm{BN}}=0.3 \mathrm{~V}$ to 4.3 V or Floating,	OV or Floating				-40	40	$\mu \mathrm{A}$
R_{ON}	Switch On Resistance ${ }^{(3,6)}$	$\mathrm{I}_{\mathrm{ON}}=100 \mathrm{~mA}, \mathrm{~B} 0$ or $\mathrm{B} 1=$ $0,0.7 \mathrm{~V}, 3.6 \mathrm{~V}, 4.3 \mathrm{~V}$; Figure 3	4.30		0.4			0.8	Ω
		$\mathrm{I}_{\mathrm{ON}}=100 \mathrm{~mA}, \mathrm{~B} 0$ or $\mathrm{B} 1=$ $0,0.7 \mathrm{~V}, 2.0 \mathrm{~V}, 2.7 \mathrm{~V}$; Figure 3	2.70		0.8			1.0	
		$\mathrm{I}_{\mathrm{On}}=100 \mathrm{~mA}, \mathrm{~B} 0$ or $\mathrm{B} 1=$ $0,0.7 \mathrm{~V}, 1.6 \mathrm{~V}, 2.3 \mathrm{~V}$; Figure 3	2.30					1.5	
		$\mathrm{I}_{\mathrm{ON}}=100 \mathrm{~mA}$, B 0 or $\mathrm{B} 1=$ $0,0.7 \mathrm{~V}, 1.65 \mathrm{~V}$; Figure 3	1.65		1.3			2.0	
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Matching Between Channels ${ }^{(4)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{on}}=100 \mathrm{~mA}, \mathrm{~B} 0 \text { or } \\ & \mathrm{B} 1=0.7 \mathrm{~V} \end{aligned}$	2.30 to 4.30		0.050			0.130	Ω
$\mathrm{R}_{\text {FLAt(ON) }}$	On Resistance Flatness ${ }^{(5)}$	$\begin{aligned} & l_{\text {lout }}=100 \mathrm{~mA}, \mathrm{B0} \text { or } \\ & \mathrm{B} 1=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}} \end{aligned}$	2.70 to 4.30					0.45	Ω
Icc	Quiescent Supply Current	$\mathrm{V}_{\mathrm{SW}}=0$ or V_{Cc}, $\mathrm{l}_{\text {lut }}=0$	4.30	-100		100	-500	500	nA
$\mathrm{I}_{\text {CCT }}$	Increase in $\mathrm{I}_{\text {cc }}$ per Input	Input at 2.6 V	4.30		3.0			10.0	$\mu \mathrm{A}$
		Input at 1.8V			7.0				

Notes:

3. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
4. $\Delta R_{\mathrm{ON}}=R_{\mathrm{ON} \text { max }}-\mathrm{R}_{\mathrm{ON} \text { min }}$ measured at identical Vcc , temperature, and voltage.
5. Flatness is defined as the difference between the maximum and minimum value of on resistance (R_{ON}) over the specified range of conditions.
6. Guaranteed by characterization, not production tested.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 4.0 V at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	V cc (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{aligned} & T_{A}=-40 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		Unit	Figure
				Min.	Typ.	Max.	Min.	Max.		
ton	Turn-On Time	$\begin{aligned} & B 0 \text { or } B 1=1.0 \mathrm{~V}, \\ & R_{L}=50 \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	3.60 to 4.30	5		65	3	70	ns	Figure 6 Figure 7
			2.70 to 3.60	5		65	3	70		
			2.30 to 2.70	5		70	3	80		
			1.65 to 1.95	10		100	10	150		
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{aligned} & B 0 \text { or } B 1=1.0 \mathrm{~V}, \\ & R_{L}=50 \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	3.60 to 4.30	1		35	1	45	ns	
			2.70 to 3.60	1		35	1	45		
			2.30 to 2.70	2		45	2	50		
			1.65 to 1.95	2		70	2	95		
$\mathrm{t}_{\text {Bbm }}$	Break-BeforeMake Time	$\begin{aligned} & B 0 \text { or } B 1=1.0 \mathrm{~V}, \\ & R_{L}=50 \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	3.60 to 4.30				2		ns	Figure 8
			2.70 to 3.60				2			
			2.30 to 2.70				2			
			1.65 to 1.95				2			
Q	Charge Injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=0 \Omega \end{aligned}$	3.60 to 4.30		25				pC	Figure12
			2.70 to 3.60		15					
			2.30 to 2.70		12					
			1.65 to 1.95		5					
OIRR	Off Isolation	$\begin{aligned} & \mathrm{f}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \end{aligned}$	1.65 to 4.30		-60				dB	Figure 10
Xtalk	Crosstalk	$\begin{aligned} & \mathrm{f}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	1.65 to 4.30		-60				dB	Figure 11
BW	-3db Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	1.65 to 4.30		>50				MHz	Figure 9
THD	Total Harmonic Distortion	$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , $\mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{PP}}$	1.65 to 4.30		0.1				\%	$\begin{aligned} & \text { Figure } \\ & 15 \end{aligned}$
SNR	Signal to Noise Ratio	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{dBmw}, \\ & \mathrm{~V}_{\text {BIAS }}=0 \mathrm{~V} \end{aligned}$	4.30		-70				dB	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit	Figure
				Min.	Typ.	Max.		
$\mathrm{Clin}_{\text {I }}$	Control Pin Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	0		3		pF	Figure 13
Coff	B Port Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.30			30	pF	Figure 13
$\mathrm{C}_{\text {on }}$	A Port On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.30			150	pF	Figure 14

Test Diagrams

Figure 3. On Resistance

Figure 4. Off Leakage (Ports Tested Separately)

Figure 6. Test Circuit Load

Figure 7. Turn-On / Turn-Off Waveforms

Test Diagrams (Continued)

Figure 8. Break-Before-Make Interval Timing

Figure 9. Bandwidth

Figure 10. Channel Off Isolation

Test Diagrams (Continued)

R_{S} and R_{T} are functions of the application environment (50, 75 , or 100Ω).

Crosstalk $=20$ Log $\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
Figure 11. Adjacent Channel Crosstalk

Figure 12. Charge Injection Test

Figure 13. Channel Off Capacitance

Figure 14. Channel On Capacitance

Figure 15. Total Harmonic Distortion

Physical Dimensions

MAC06AREVC

Figure 16. 6-Lead MicroPak ${ }^{\text {TM }}, 1.0 \mathrm{~mm}$ Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packagingl.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area http://www.fairchildsemi.com/products/logic/pdf/micropak tr.pdf.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Comoration's Anti-Counterfeiting Policy. Fairchild's Ant-Counterfeiting Policy is also stated on our external website, whw.fairchildsemi.com, underSales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiending counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience mary problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of produdtion and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is commited to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	\quad Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any mannerwithout notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data vill be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 142

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

