2:1 MIPI D-PHY (1.5 Gbps) 4 Data Lane Switch

FSA634

Description

The FSA634 is configured as a 4 data lane, MIPI D-PHY switch. This single pole double throw (SPDT) switch is optimized for switching between two high speed or low power MIPI sources. The FSA634 is designed for the MIPI specification and allows connection to a CSI or DSI module.

Features

- Switch Type: SPDT (10x)
- Signal Type: MIPI, D-PHY
- $\mathrm{V}_{\mathrm{CC}}: 1.65$ to 4.5 V
- Input Signal: 0 V to V_{CC}
- R_{ON} :
- 5Ω Typical HS MIPI
- 5Ω Typical LP MIPI
- $\Delta \mathrm{R}_{\mathrm{ON}}: 0.1 \Omega$ Typical
- $\mathrm{R}_{\text {ON_FLAT: }} 0.06 \Omega$ Typical
- $\mathrm{I}_{\mathrm{CCZ}}: 0.5 \mu \mathrm{~A}$ Maximum
- $\mathrm{I}_{\mathrm{CC}}: 32 \mu \mathrm{~A}$ Maximum
- $\mathrm{O}_{\text {IRR }}$: -30 dB Typical
- Bandwidth: 1.9 GHz Typical
- Xtalk: -38 dB Typical
- $\mathrm{C}_{\mathrm{ON}}: 4.3 \mathrm{pF}$ Typical
- Skew: 3 ps Typical

Applications

- Cellular Phones, Smart Phones
- Tablets
- Laptops
- Displays

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

(Bottom View) WLCSP36, 2.06x2.06x0.432 CASE 567XU
MARKING DIAGRAM
$\begin{gathered} \text { VJKK } \\ \text { XYZ } \\ \hline \end{gathered}$
VJ = Specific Device Code KK = Assembly Lot $\mathrm{X}=$ Year Y = Work Week Z = Assembly Location

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

Figure 1. Typical Application

PIN DESCRIPTIONS

PIN NAME	DESCRIPTION	
Dn	Common Data Path	
DnA	Data Path A	
DnB	Data Path B	
/OE	Output Enable	
SEL	Control Pin	SEL=0
	SEL=1	Dn = DnA
VCC	Power	
GND	Ground	
NC	No Connect	

Figure 2. Analog Symbol

PIN DEFINITIONS

Figure 3. Top Through View

Table 1. BALL-TO-PIN MAPPINGS

Ball	Pin Name	Ball	Pin Name	Ball	Pin Name
A1	GND	C1	D3A	E1	D7A
A2	GND	C2	D4A	E2	D8A
A3	/OE	C3	D3	E3	D7
A4	SEL	C4	D4	E4	D8
A5	VCC	C5	D3B	E5	D7B
A6	GND	C6	D4B	E6	D8B
B1	D1A	D1	D5A	F1	D9A
B2	D2A	D2	D6A	F2	D10A
B3	D1	D3	D5	F3	D9
B4	D2	D4	D6	F4	D10
B5	D1B	D5	D5B	F5	D9B
B6	D2B	D6	D6B	F6	D10B

Figure 4. Suggested Configuration for 4 Lane D-PHY

TRUTH TABLE

SEL	/OE	
LOW	LOW	Dn = DnA
HIGH	LOW	Dn = DnB
X	HIGH	All Ports High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Supply Voltage		-0.5	5.25	V
$\mathrm{V}_{\text {CNTRL }}$	DC Input Voltage (/OE, SEL) (Note 1)	(Note 1)	-0.5	$\mathrm{V}_{\text {c }}$	V
$\mathrm{V}_{\text {SW }}$	DC Switch I/O Voltage (Note 1,2)		-0.3	$\mathrm{V}_{\text {cc }}$	V
IIK	DC Input Diode Current		-50		mA
Iout	DC Output Current			50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JEDEC: JESD22-A114	All Pins	3.5		kV
	Charged Device Model, JEDEC: JESD22-C101		1.5		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.
2. $V_{S W}$ refers to analog data switch paths.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V_{CC}	Supply Voltage	1.65	4.50	V	
$\mathrm{~V}_{\mathrm{CNTRL}}$	Control Input Voltage (SEL, /OE)	(Note 3)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Switch I/O Voltage (Dn, DAn, DBn)	HS Mode	0	0.425	V
		LP Mode	0	1.3	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
3. The control inputs must be held HIGH or LOW; they must not float.

ELECTRICAL SPECIFICATION TABLE Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units

DC ELECTRICAL PARAMETERS

$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}$			-1.2	V
V_{IH}	Input Voltage High	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 4.50 V	1.0			V
V_{IL}	Input Voltage Low	$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$ to 4.50 V			0.4	V
IN	Control Input Leakage (SEL,/OE)	$\mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 4.50 V	-500		500	nA
$\mathrm{IN}_{\text {O(OFF) }}, \mathrm{IN}_{\mathrm{C} \text { (OFF) }}$	Off Leakage Current of Port Dn, DnA, DnB	$\mathrm{Dn}=0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$; DnA or $\mathrm{DnB}=$ Floating, 0.3 V , or $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$; $/ \mathrm{OE}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 4.5 V	-500		500	nA
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	On Leakage Current of Common Ports (Dn)	$\mathrm{Dn}=0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$; DnA or $\mathrm{DnB}=$ Floating, 0.3 V , or $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$; $/ \mathrm{OE}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 4.5 V	-500		500	nA
IofF	Power-Off Leakage Current	Dn, DnA or DnB; $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 4.5 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-500		500	nA
IOZ	Off-State Leakage	$\begin{aligned} & 0 \leq \mathrm{Dn}, \mathrm{DnA}, \mathrm{DnB} \leq 3.6 \mathrm{~V}, / \mathrm{OE}=\text { High, } \\ & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$	-500		500	nA
RON_MIPI_HS_1p8	Switch On Resistance for HS MIPI Applications (Note 5)	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V} \mathrm{VC} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$		5	12	Ω
RON_MIPI_HS_2p5		$\begin{aligned} & \mathrm{ION}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V} \mathrm{VC} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$		5	9	Ω
RON_MIPI_HS_3p6		$\begin{aligned} & \mathrm{ION}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V} \end{aligned}$		5	9	Ω
RON_MIPI_HS_4p5		$\mathrm{ION}^{2}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}}$ or 0 V , DnA or $\mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		5	9	Ω
RON_MIPI_LP_1p8	Switch On Resistance for LP MIPI Applications (Note 5)	$\begin{aligned} & \mathrm{ION}_{\mathrm{O}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V} \mathrm{VC} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V} \mathrm{CC}=1.8 \mathrm{~V} \end{aligned}$		5	12	Ω
RON_MIPI_LP_2p5		ION $=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}}$ or 0 V , DnA or DnB $=0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$		5	9	Ω
RON_MIPI_LP_3p6		$\mathrm{ION}^{2}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V} \text { CC or } 0 \mathrm{~V} \text {, }$ $\mathrm{DnA} \text { or } \mathrm{DnB}=0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		5	9	Ω
RON_MIPI_LP_4p5		$\mathrm{ION}^{2}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}}$ or 0 V , DnA or $\mathrm{DnB}=0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		5	9	Ω

ELECTRICAL SPECIFICATION TABLE Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units

DC ELECTRICAL PARAMETERS

$\Delta \mathrm{R}_{\text {ON_MIPI_HS_1p8 }}$	On Resistance Matching Between HS MIPI Channels	$\begin{aligned} & \mathrm{l}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$		0.10		Ω
$\Delta \mathrm{R}_{\text {ON_MIPI_HS_2p5 }}$		$\begin{aligned} & \mathrm{ION}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$		0.10		Ω
$\Delta \mathrm{R}_{\text {ON_MIPI_HS_3p6 }}$		$\begin{aligned} & \mathrm{ION}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V} \end{aligned}$		0.10		Ω
$\Delta \mathrm{R}_{\text {ON_MIPI_HS_4p5 }}$		$\begin{aligned} & \mathrm{ON}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		0.10		Ω
$\Delta \mathrm{R}_{\text {ON_MIPI_LP_1p8 }}$	On Resistance Matching Between LP MIPI Channels	$\begin{aligned} & \mathrm{ION}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$		0.12		Ω
$\Delta \mathrm{R}_{\text {ON_MIPI_LP_2p5 }}$		$\begin{aligned} & \mathrm{l}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$		0.12		Ω
$\Delta \mathrm{R}_{\text {ON_MIPI_LP_3p6 }}$		$\begin{aligned} & \mathrm{l}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V} \end{aligned}$		0.12		Ω
$\Delta \mathrm{R}_{\text {ON_MIPI_LP_4p5 }}$		$\begin{aligned} & \mathrm{ON}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		0.12		Ω
RON_FLAT_MIPI_HS_1p8	On Resistance Flatness for HS MIPI Signals	$\begin{aligned} & \mathrm{O}_{\mathrm{NN}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$		0.04		Ω
RON_FLAT_MIPI_HS_2p5		$\begin{aligned} & \mathrm{l}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$		0.06		Ω
RON_FLAT_MIPI_HS_3p6		$\begin{aligned} & \mathrm{ON}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V} \mathrm{VC} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V} \end{aligned}$		0.06		Ω
RON_FLAT_MIPI_HS_4p5		$\begin{aligned} & \mathrm{ION}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.1 \mathrm{~V}, 0.2 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		0.06		Ω
RON_FLAT_MIPI_LP_1p8	On Resistance Flatness for LP MIPI Signals	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V} \mathrm{VC} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$		0.18		Ω
RON_FLAT_MIPI_LP_2p5		$\mathrm{I}_{\mathrm{ON}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{C C}$ or 0 V , DnA or $\mathrm{DnB}=0.0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$		0.28		Ω
RON_FLAT_MIPI_LP_3p6		$\begin{aligned} & \mathrm{ONN}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V} \end{aligned}$		0.28		Ω
RON_FLAT_MIPI_LP_4p5		$\begin{aligned} & \mathrm{ION}^{\mathrm{O}}=-10 \mathrm{~mA}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{SEL}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \mathrm{~V}, \\ & \mathrm{DnA} \text { or } \mathrm{DnB}=0.0 \mathrm{~V}, 0.6 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		0.28		Ω
$I_{\text {CCZ }}$	Quiescent Hi-Z Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}, \mathrm{l}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\text {CC }}=4.5 \mathrm{~V}$			0.5	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {CC }}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\text {CC }}=2.5 \mathrm{~V}$ to 4.5 V		16	32	$\mu \mathrm{A}$
ICC_1p8		$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {CC }}, \mathrm{l}_{\text {OUT }}=0 \mathrm{~A}, \mathrm{~V}_{\text {CC }}=1.8 \mathrm{~V}$		15	25	$\mu \mathrm{A}$
ICCT_4p5	Increase in Icc Current Per Control Voltage and $V_{C C}$	$\mathrm{V}_{\text {SEL }}=1.65 \mathrm{~V}, / \mathrm{OE}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			4	$\mu \mathrm{A}$
ICCT_2p5		$\mathrm{V}_{\text {SEL }}=1.65 \mathrm{~V}, / \mathrm{OE}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$			0.1	$\mu \mathrm{A}$

AC ELECTRICAL PARAMETERS

$\mathrm{t}_{\text {INIT }}$	Initalization Time V_{CC} to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \text { to } 4.5 \mathrm{~V} \end{aligned}$		100	$\mu \mathrm{S}$
tinit_1p8		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}$		150	$\mu \mathrm{S}$
$t_{\text {EN }}$	Enable Turn-On Time, /OE to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \text { to } 4.5 \mathrm{~V} \end{aligned}$	120	200	ns
ten_1p8		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	250	500	ns
$\mathrm{t}_{\text {DIS }}$	Disable Turn-Off Time, /OE to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \text { to } 4.5 \mathrm{~V} \end{aligned}$	25	50	ns
tDIS_1p8		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	50	90	ns

ELECTRICAL SPECIFICATION TABLE Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units

AC ELECTRICAL PARAMETERS

ton	Turn-On Time, SEL to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \text { to } 4.5 \mathrm{~V}, \mathrm{SEL}=\mathrm{H} \text { to } \mathrm{L}, \mathrm{SEL}=\mathrm{L} \text { to } \mathrm{H} \end{aligned}$			200	ns
ton_1p8		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \\ & \mathrm{SEL}=\mathrm{H} \text { to } \mathrm{L}, \mathrm{SEL}=\mathrm{L} \text { to } \mathrm{H} \end{aligned}$			300	ns
toff	Turn-Off Time SEL to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \text { to } 4.5 \mathrm{~V}, \mathrm{SEL}=\mathrm{H} \text { to } \mathrm{L}, \mathrm{SEL}=\mathrm{L} \text { to } \mathrm{H} \end{aligned}$			200	ns
tofF_1p8		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \\ & \mathrm{SEL}=\mathrm{H} \text { to } \mathrm{L}, \mathrm{SEL}=\mathrm{L} \text { to } \mathrm{H} \end{aligned}$			300	
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}= \\ & 1.65 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$	10	50		ns
OIRR	Off Isolation for MIPI (Note 5)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=750 \mathrm{MHz}, / \mathrm{OE}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SW}}=$ $-1 \mathrm{dBm}(200 \mathrm{mV}$ PP $), \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 4.5 V		-30		dB
XTALK	$\begin{aligned} & \text { Crosstalk for MIPI } \\ & \text { (Note 5) } \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=750 \mathrm{MHz}, \mathrm{~V}_{\mathrm{SW}}=-1 \mathrm{dBm} \\ & \left(200 \mathrm{mV} \mathrm{~V}_{\mathrm{PP}}\right), \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$		-38		dB
BW	$\begin{array}{\|l} \text { Bandwidth at }-3 \mathrm{~dB} \\ \text { (Note 5) } \end{array}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		1.9		GHz
${ }_{\text {tSK(0) }}$	Channel-to-Channel Sin-gle-Ended Skew (Note 5)	TDR-Based Method ($\mathrm{V}_{\mathrm{SW}}=0.2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{C}_{\mathrm{L}}=$ C_{ON}), $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		3	20	ps
$\mathrm{t}_{\text {KK(P) }}$	Skew of Opposite Transitions of the Same Output (Note 5)	TDR-Based Method ($\mathrm{V}_{\mathrm{SW}}=0.2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{C}_{\mathrm{L}}=$ C_{ON}), $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		3	20	ps

CAPACITANCE

C_{IN}	Control Pin Input Capaci- tance (Note 5)	CC C_{ON}	Out On Capacitance (Note 5)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, / \mathrm{OE}=0 \mathrm{VHz}, \mathrm{f}=1 \mathrm{MHz}$	2.7
$\mathrm{C}_{\text {OFF }}$	Out Off Capacitance (Note 5)	V_{CC} and $/ \mathrm{OE}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	4.3	pF	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Guarantee Levels:
4. Guaranteed by Design. Characterized on the ATE or Bench.
5. Guaranteed by Design and Characterization, not Production Tested.

The table below pertains to the Packaging information on the following page.
ORDERING INFORMATION

Part Number	Operating Temperature Range	Package	Top Mark
FSA634UCX	-40 to $+85^{\circ} \mathrm{C}$	36 -Ball WLCSP, Non-JEDEC	VJ
	$2.06 \times 2.06 \mathrm{~mm}, 0.35 \mathrm{~mm}$ Pitch		

WLCSP36 2.06x2.06x0.432

CASE 567XU
ISSUE O
DATE 26 APR 2019

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DATUM C APPLIES TO THE SPHERICAL CROWN OF THE SOLDER BALLS

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	0.391	0.432	0.473
A1	0.154	0.174	0.194
A2	0.215	0.233	0.251
A3	0.022	0.025	0.028
b	0.211	0.231	0.251
D	2.03	2.06	2.09
E	2.03	2.06	2.09
e	0.35 BSC		
x	0.140	0.155	0.170
y	0.140	0.155	0.170

RECOMMENDED MOUNTING FOOTPRINT*
(NSMD PAD TYPE)
*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE
STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON06820H | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP36 2.06x2.06x0.432 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12

