ON Semiconductor

Is Now

# onsemi 

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{\text {® }}$

## FSA642 <br> Low-Power, Three-Port, High-Speed MIPI Switch

## Features

- Low On Capacitance: 7.0 pF Typical
- Low On Resistance: $7.0 \Omega$ Typical
- Wide -3db Bandw idth: 1 GHz Typical
- 24-Lead UMLP ( $2.5 \times 3.4 \mathrm{~mm}$ ) Package
- 8 kV ESD Rating; >16 kV Pow er/GND ESD Rating


## Applications

- Dual Camera Applications for Cell Phones
- Dual LCD Applications for Cell Phones, Digital Camera Displays, and View finders


## Description

The FSA642 is a bi-directional, low-pow er, high-speed analog switch. The pin out is designed to ease differential signal layout and is configured as a triplepole, double-throw switch (TPDT). The FSA642 is optimized for sw itching betw een tw o MIPI devices, such as cameras or LCD displays and on-board Multimedia Application Processors (MAP).

The FSA642 is compatible with the requirements of Mobile Industry Processor Interface (MIPI). The low capacitance design allows the FSA642 to sw itch signals that exceed 500 MHz in frequency. Superior channel-tochannel crosstalk immunity minimizes interference and allows the transmission of high-speed differential signals and single-ended signals, as described by the MPI specification.

## Ordering Information

| Part Number | Top Mark | Operating Temperature Range | Package |
| :---: | :---: | :---: | :---: |
| FSA642UMX | JG | -40 to $+85^{\circ} \mathrm{C}$ | $24-L e a d, ~ Q u a d, ~ U l l r a t h i n ~ M o l d e d ~ L e a d l e s s ~$ <br> Package |



Figure 1. Application Block Diagram

## Pin Configuration



Figure 2. Pin Configuration (Top Through View)

## Pin Definitions

| Pin \# | Name |  |
| :---: | :---: | :--- |
| 1,2 | CLKP, CLKN | Clock Path (Common) |
| 3,4 | D1P, D1N | Data Path 1 (Common) |
| 5,6 | D2P, D2N | Data Path 2 (Common) |
| 7,24 | NC | No Connect (Float) |
| 8 | /OE | Output Enable (Active Low) |
| 9 | GND | Ground |
| 10 | VCC | Pow er |
| 11 | SEL | Select (0=A, 1=B) |
| 12,13 | DA2N, DA2P | Data Path (A2) |
| 14,15 | DA1N, DA1P | Data Path (A1) |
| 16,17 | CLKAN, CLKAP | Clock Path (A) |
| 18,19 | DB2N, DB2P | Data Path (2B) |
| 20,21 | DB1P, DB1N | Data Path (1B) |
| 22,23 | CLKBP, CLKBN, | Clock Path (B) |

## Functional Diagram



Figure 3. Functional Diagram

Truth Table

| SEL | /OE | Function |
| :---: | :---: | :---: |
| Don't Care | HIGH | Disconnect |
| LOW | LOW | D1, D2, CLK=DA1, DA2, CLKA |
| HIGH | LOW | D1, D2, CLK=DB1, DB2, CLKB |

## Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol | Parameter |  | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {cc }}$ | Supply Voltage |  | -0.50 | +5.25 | V |
| $\mathrm{V}_{\text {CNTRL }}$ | DC Input Voltage (SEL, /OE) ${ }^{(1)}$ |  | -0.5 | $\mathrm{V}_{\text {cc }}$ | V |
| $\mathrm{V}_{\text {SW }}$ | DC Sw itch VO Voltage ${ }^{(1)}$ |  | -0.5 | $\mathrm{V}_{\mathrm{cc}}+0.3$ | V |
| IIK | DC Input Diode Current |  | -50 |  | mA |
| lout | DC Output Current |  |  | 50 | mA |
| Tsta | Storage Temperature |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| ESD | Human Body Model, JEDEC: JESD22-A114 | All Pins |  | 6.5 | kV |
|  |  | VO to GND |  | 8.0 |  |
|  |  | Pow er to GND |  | 16.0 |  |
|  | Charged Device Model, JEDEC: JESD22-C101 |  |  | 2.5 |  |

## Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

## Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

| Symbol | Parameter | Min. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 2.65 | 4.30 | V |
| $\mathrm{~V}_{\mathrm{CNTRL}}$ | Control Input Voltage (SEL, /OE) ${ }^{(2)}$ | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{SW}}$ | Sw itch /O Voltage | -0.5 | $\mathrm{~V}_{\mathrm{CC}}-1$ | V |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating Temperature | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |

Note:
2. The control input must be held HIGH or LOW; it must not float.

## DC Electrical Characteristics

All typical values are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=-40$ to +850 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| VIK | Clamp Diode Voltage | $\mathrm{l}_{\mathrm{N}=-18 \mathrm{~mA}}$ | 2.775 |  |  | -1.2 | V |
| In | Control Input Leakage | $\mathrm{V}_{\mathrm{SW}}=0$ to 4.3 V | 4.3 | -1 |  | 1 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{H}}$ | Input Voltage High | $\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\mathrm{Cc}}$ | 2.650 to 2.775 | 1.3 |  |  | V |
|  |  |  | 4.3 | 1.7 |  |  |  |
| $\mathrm{V}_{\text {IL }}$ | Input Voltage Low | $\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$ | 2.650 to 2.775 |  |  | 0.5 | V |
| loz | Off-State Leakage | $\mathrm{A}, \mathrm{B}=0+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}-0.3$ | 4.3 | -2 |  | 2 | $\mu \mathrm{A}$ |
| Icc | Quiescent Supply Current | $\mathrm{V}_{\text {CNTRL }}=0$ or $\mathrm{V}_{\text {cc }}$, lout $=0$ | 4.3 |  |  | 1.0 | $\mu \mathrm{A}$ |
| Icct | Increase in Icc Current Per Control Voltage and Vcc | $\mathrm{V}_{\text {CNTRL }}=1.8 \mathrm{~V}$ | 2.775 |  |  | 1.5 | $\mu \mathrm{A}$ |

## DC Electrical Characteristics, Low-Speed Mode

All typical values are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| Ron | LS Sw itch On Resistance ${ }^{(3)}$ | $\mathrm{V}_{\mathrm{SW}}=1.2 \mathrm{~V}$, $\mathrm{l}_{\mathrm{os}=-10 \mathrm{~mA} \text {, Figure } 4}$ | 2.65 |  | 10 | 14 | $\Omega$ |
| $\Delta \mathrm{RoN}$ | LS Delta Ron ${ }^{(4)}$ | $\mathrm{V}_{\mathrm{SW}}=1.2 \mathrm{~V}, \mathrm{l}_{\mathrm{N}}=-10 \mathrm{~mA}$ (Intra-pair) | 2.65 |  | 0.65 |  | $\Omega$ |

## Notes:

3. Measured by the voltage drop betw een $A / B$ and CLK/Dn pins at the indicated current through the sw itch.
4. Guaranteed by characterization.

## DC Electrical Characteristics, High-Speed Mode

All typical values are $T_{A}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=-40$ to +850 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| Ron | HS Sw itch On Resistance ${ }^{(5)}$ | $\mathrm{V}_{\text {SW }}=0.4 \mathrm{~V}$, lon=-10 mA, Figure 4 | 2.65 |  | 7.0 | 9.5 | $\Omega$ |
| $\Delta \mathrm{RoN}$ | HS Delta Ron ${ }^{(6)}$ | $\mathrm{V}_{\mathrm{SW}}=0.4 \mathrm{~V}$, lon=-10 mA (Intra-pair) | 2.65 |  | 0.65 |  | $\Omega$ |

## Notes:

5. Measured by the voltage drop betw een $A, B$, and $D n$ pins at the indicated current through the sw itch.
6. Guaranteed by characterization.

## AC Electrical Characteristics

All values are at $R_{L}=50 \Omega$ and $R_{S}=50 \Omega$ and all typical values are $\mathrm{V}_{C C}=2.775 \mathrm{~V}$ at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

| Symbol | Parameter | Conditions | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| OIRR | Off Isolation ${ }^{(7)}$ | $\mathrm{f}=100 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega$ $\text { Figure } 14$ | 2.775 |  | -35 |  | dB |
| Xtalk | Non-Adjacent Channel Crosstalk ${ }^{(7)}$ | $\mathrm{f}=100 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega$ <br> Figure 15 | 2.775 |  | -55 |  | dB |
| BW | -3 db Bandw idth ${ }^{(7)}$ | $\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{T}}=50 \Omega$ <br> Figure 13 | 2.775 |  | 1.0 |  | GHz |
| ton | Turn-On Time SEL, /OE to Output | $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1.2 \mathrm{~V}$ <br> Figure 6, Figure 7 | 2.650 to 2.775 |  | 20 | 37 | ns |
| toff | Turn-Off Time SEL, /OE to Output | $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{sw}}=1.2 \mathrm{~V}$ <br> Figure 6, Figure 7 | 2.650 to 2.775 |  | 15 | 27 | ns |
| tpd | Propagation Delay ${ }^{(7)}$ | $\begin{aligned} & \hline \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \text { Figure 6, Figure } 8 \end{aligned}$ | 2.775 |  | 0.25 |  | ns |
| $t_{\text {BBM }}$ | Break-Before-Make Time | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{SW}}=1.2 \mathrm{~V} \\ & \text { Figure } 12 \end{aligned}$ | 2.650 to 2.775 | 3 | 5 | 8 | ns |

Note:
7. Guaranteed by characterization.

## AC Electrical Characteristics, High-Speed

All typical values are $\mathrm{V}_{\mathrm{C}}=2.775 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

| Symbol | Parameter | Conditions | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$ |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| tsk(Part_Part) | Channel-to-Channel Skew Across Multiple Parts ${ }^{(8,9)}$ | Vsw=0.2 Vdiffpp, $\mathrm{C}=5 \mathrm{pF}$ |  | 40 | 80 | ps |
| tsk(Chl_Chl) | Channel-to-Channel Skew Within a Single Part ${ }^{(8)}$ | $\mathrm{V}_{\mathrm{Sw}}=0.2 \mathrm{Vdiff}_{\mathrm{pP}}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Figure 9 |  | 15 | 30 | ps |
| tsk(Pulse) | Skew of Opposite Transitions in the Same Differential Channel ${ }^{(8)}$ | Vsw=0.2 Vdiffpp, $\mathrm{C}_{\text {L }}=5 \mathrm{pF}$ |  | 10 | 20 | ps |

## Notes:

8. Guaranteed by characterization.
9. Assumes the same $\mathrm{V}_{\mathrm{cc}}$ and temperature for all devices.

## Capacitance

| Symbol | Parameter | Conditions | $\mathrm{T}_{\mathrm{A}}=-40 \div \mathrm{C}$ to +850 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| Cln | Control Pin Input Capacitance | $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$ |  | 1.5 |  | pF |
| Con | Dn/CLK- On Capacitance ${ }^{(10)}$ | $\mathrm{V} \mathrm{cc}=2.775 \mathrm{~V}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, at $25^{\circ} \mathrm{C}$, Figure 11 | 6.0 | 7.0 | 9.0 |  |
| Coff | Dn/CLK Off Capacitance ${ }^{(10)}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.775 \mathrm{~V}, / \mathrm{OE}=2.775 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \text {, Figure } 10 \end{aligned}$ |  | 2.5 |  |  |

## Note:

10. Guaranteed by characterization.

## Test Diagrams



Figure 4. On Resistance

$R_{L}, R_{S}$, an $C_{L}$ ar fu ctions of th ap lication environment (se AC Tables for spe ific $v$ lues) $\mathrm{C}_{\mathrm{L}}$ inclu es test fixture an stra capacitance

Figure 6. AC Test Circuit Load


Figure 8. Propagation Delay ( $\mathrm{t}_{\mathrm{r}}^{\mathrm{F}} \mathrm{F}-500 \mathrm{ps}$ )


Figure 10. Channel Off Capacitance

**Each switch port is tested separately
Figure 5. Off Leakage


Figure 7. Turn-On / Turn-Off Waveforms


Figure 9. Channel-to-Channel Skew


Figure 11. Channel On Capacitance

Test Diagrams (Continued)


Figure 12. Break-Before-Make Interval Timing
 environment (see AC Tables for specific values).

Figure 13. Bandw idth


Off isolation $=20 \log \left(\mathrm{~V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
Figure 14. Channel Off Isolation


Figure 15. Non-Adjacent Channel-to-Channel Crosstalk

## Physical Dimensions



NOTES:
A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
B. DIMENSIONS ARE IN MILLIMETERS.

C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
E. DRAWING FILENAME: MKT-UMLP24Arev3.


Figure 16. 24-Lead UMLP Package
Product-Specific Dimensions

| Description | Nominal Values (mm) |
| :---: | :---: |
| Overall Height | 0.500 |
| PKG Standoff | 0.026 |
| Lead Thickness | 0.152 |
| Lead Width $(24 \mathrm{x})$ | 0.200 |


| Description | Nominal Values (mm) |
| :---: | :---: |
| Lead Length (23x) | 0.4 |
| Lead Length, Pin 1 (1x) | 0.5 |
| Lead Pitch | 0.4 |
| Body Length (X) | 3.4 |
| Body Width (Y) | 2.5 |

## 2.5x3.4 UMLP24L Packing - Embossed Tape FSA642UMX

Packing Description:
UMLP 24 pins products are classified under Moisture Sensitive Level 1.
The carrier tape is made from dissipative polystyrene or polycarbonate resin. The cover tape is a multilayer film primarily composed of polyester film, adhesive layer, heat activated sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 5000 units per 178 mm diameter reel. Up to three reels are packed in each intermediate box. The reels is made of polystyrene plastic (anti-static coated or intrinsic).

These full reels are individually barcode labeled and placed inside a pizza box made of recyclable corrugated brown paper with a Fairchild logo printing. The reel is packed single reel in the pizza box. And these pizza boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped.


ESD Logo Label sample
Electrostatic Sensitive Devices Require Proper Handling Procedures

$$
\overline{\text { TNR Date }} \quad \overline{\text { Remark }}
$$



Tape Leader and Trailer Configuration


## UMLP Embossed Tape Dimension





Figure 18. Tape and Reel Packing Specification, page 2


#### Abstract

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.


## PUBLICATION ORDERING INFORMATION

 LITERATURE FULFILLMENT:Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. Amer ic an Technical Support: 800-282-9855 Toll Free USA/Canada.
Europe, Middle East and Afr ica Technical Support: Order Literature: http://www.onsemi.com/orderit
Phone: 421337902910
Japan Customer Focus Center For additional information, please contact your local Phone: 81-3-5817-1050

ON Semic onductor Website: www.onsemi.com Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12


[^0]:    
    
    
    
    
    
    
    
    
    
    
    
     Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

