

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]FSA7830

8-Channel Voltage MUX with Integrated Voltage Divider and OVP

Features

- Voltage Supply, 2.7 to 5.5 V
- Input Voltage Range, 0 to 5.4 V
- Up to 8-Channel Inputs
- Integrated $1 / 3,2 / 3$ Voltage Divider
- Integrated Over-Voltage Protection and Assertion
- Total Introduced Offset < $\pm 10 \mathrm{mV}$
- $\mathrm{I}_{\mathrm{cc}}<100 \mu \mathrm{~A}$, Ishutdown $<1 \mu \mathrm{~A}$
- $1.8 \mathrm{VI}^{2} \mathrm{C}$ Interface, Addr<1:0> to Set Address for Multi Chip Solution
- 16 -Ball, 0.4 mm Pitch, $1.56 \mathrm{~mm} \times 1.56 \mathrm{~mm}$, WLCSP Package

Applications

- Cell Phones
- Tablets

Description

The FSA7830 is an 8-Channel, low-power Voltage MUX.

It integrates 8 analog switches for input voltage selection, and voltage dividers to provide 1/3, 2/3 fraction of selected voltage. With another 3 analog switches, FSA7830 provides feasibility to choose 1/3, $2 / 3$ or 1 times of selected voltage.
FSA7830 also contains output buffer to enhance driving capability. It features over-voltage protection to ensure output less than 2 V , interrupt will be alerted at the same time.

FSA7830 supports 1.8 V I2C interface to communicate with processor, and 2 address pins to provide multi-chip solution.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSA7830BUCX	GT	-40 to $+85^{\circ} \mathrm{C}$	16-Ball, 0.4 mm Pitch Wafer Level Chip Scale Package $($ WLCSP $)$ Package $(1.56 \times 1.56 \mathrm{~mm})$

Typical Application

Figure 1. Application Diagram

Pin Configuration

Figure 2. 16 Ball WLCSP Package(Top View)
Pin Definitions

Pin\#	Name	
A1	V5	Input Port 5
A2	V6	Input Port 6
A3	V7	Input Port 7
A4	V8	Input Port 8
B1	V4	Input Port 4
B2	VCC	Voltage Supply
B3	ADDR<0>	Address Pin, Bit 0
B4	VO	Output Voltage
C1	V3	Input Port 3
C2	ADDR<1>	Address Pin, Bit 1
C3	GND	Ground
C4	VINT	I2C Interrupt
D1	V2	Input Port 2
D2	V1	Input Port 1
D3	SCL	I2C Clock
D4	SDA	I2C Data

I2C Specifications

Symbol	Parameter	Fast Mode		
		Min.	Max.	Unit
$\mathrm{f}_{\text {SCL }}$	I2C_SCL Clock Frequency	0	400	kHz
$\mathrm{t}_{\text {HD; }}$ STA	Hold Time (Repeated) START Condition	0.6		$\mu \mathrm{s}$
tıow	LOW Period of I2C_SCL Clock	1.3		$\mu \mathrm{s}$
thigh	HIGH Period of I2C_SCL Clock	0.6		$\mu \mathrm{s}$
tsu;sta	Set-up Time for Repeated START Condition	0.6		$\mu \mathrm{s}$
thd; DAT	Data Hold Time	0	0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Su; DAT }}$	Data Set-up Time ${ }^{(1)}$	100		ns
tr_{r}	Rise Time of I2C_SDA and I2C_SCL Signals ${ }^{(1)}$	$20+0.1 C_{b}$	300	ns
t_{f}	Fall Time of I2C_SDA and I2C_SCL Signals ${ }^{(1)}$	$20+0.1 C_{b}$	300	ns
tsu;sto	Set-up Time for STOP Condition	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {BuF }}$	BUS-Free Time between STOP and START Conditions	1.3		$\mu \mathrm{s}$
tsp	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns

Note:

1. A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu;DAT \geq $\square 250$ ns must be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal. If such a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line t_{r} max $+t_{s u ; D A T}=1000+250=1250 \mathrm{~ns}$ (according to the standard-mode I2C bus specification) before the I2C_SCL line is released.

Figure 1. Definition of Timing for Full-Speed Mode Devices on the I2C Bus
Table 1. $I^{2} C^{T M}$ Slave Address

ADDR<1:0>	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00	1	0	0	0	0	1	0	R/W
01	1	0	0	0	0	1	1	R/W
10	1	0	0	0	1	0	1	R/W
11	1	0	1	0	1	0	0	R/W

I2C Interface

The FSA7830 includes a full I2C slave controller. The I2C slave fully complies with the I2C specification version 2.1 requirements. This block is designed for fast mode, 400 kHz , signals.

Examples of an I2C write and read sequence are shown in below Figure 3 and Figure 4 respectively.

Note: \quad Single Byte read is initiated by Master with P immediately following first data byte
Figure 3. I2C Write Example

Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed

	From Master to Slave	S	Start Condition	NA NOT Acknowledge (SDA High)	RD	Read=1
	From Slave to Master	A	Acknowledge (SDA Low)	WR Write=0	P	Stop Condition

Figure 4. I2C Read Example

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$V_{C C}$	Supply Voltage		-0.5	6	V
V1~8	Input Voltage		-0.5	6	V
I_{1}	DC Input Diode Current		-50		mA
TSTG	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity Level (JEDEC J-STD-020A)			1	Level
ESD	Human Body Model, JEDEC: JESD22A114	All Pins	2		kV
		I/O to GND	2		
		Power to GND	2		
	Charged Device Model, JEDEC: JESD22-C101		500		V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	2.7	5.5	V
$\mathrm{~V} 1 \sim 8$	Input Voltage	0	5.4	V
$\mathrm{~V}_{\text {ADDR }}$	Address Pin Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {SCL,SDA,INT }}$	I2C Bus Voltage Swing	0	1.8	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{CC}}=3.7 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, with $100 \mathrm{~K} \Omega$ and $100 \mathrm{nF}+10 \mathrm{pF}$ loading at VO , unless otherwise specified.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{l}_{1 \times}=-18 \mathrm{~mA}$				-0.7	V
$\mathrm{V}_{\text {IH12C }}$	High-Level Input Voltage		2.7 to 5.5	1.26			V
VIII2C	Low-Level Input Voltage		2.7 to 5.5			0.54	V
$\mathrm{V}_{\text {HYSI2C }}$	Hysteresis of Schmitt Trigger Inputs		2.7 to 5.5	0.09			V
112 C	Input Current of SDA, SCL and \INT	Input Voltage 0.26 V to 2 V	2.7 to 5.5	-10		10	$\mu \mathrm{A}$
Icctioc	$\mathrm{V}_{\text {cc }}$ current when SDA or SCL is HIGH	Input Voltage 1.8 V	5.5			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IHADDR }}$	High-Level Input Voltage		2.7 to 5.5	1.26			V
$\mathrm{V}_{\text {ILADDR }}$	Low-Level Input Voltage		2.7 to 5.5			0.54	V
$V_{\text {HYSADDR }}$	Hysteresis of Schmitt Trigger Inputs		2.7 to 5.5	0.09			V
Volsda	Low-Level Output Voltage of SDA Pin	4 mA Sink Current (Open-Drain)	2.7 to 5.5			0.36	V
Volintn	Low-Level Output Voltage of IINT	4 mA Sink Current (Open-Drain)	2.7 to 5.5			0.36	V
$\mathrm{R}_{\text {ON1 }}$	Switch1 On Resistance		2.7 to 5.5		100	200	Ω
Ron2	Switch2 On Resistance ${ }^{(2)}$		2.7 to 5.5		100	200	Ω
R VD	Voltage Divider On Resistance ${ }^{(2)}$		2.7 to 5.5	1			$\mathrm{M} \Omega$
Icc	Quiescent Supply Current	All blocks in Enable Mode	2.7 to 5.5			100	$\mu \mathrm{A}$
Iccz	Disable Mode Leakage Current		2.7 to 5.5	-1		3.9	$\mu \mathrm{A}$
Ileak,on	Leakage Current of each channel from V1~8 to GND in Enable Mode					2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LEAK, OFF }}$	Leakage Current of each channel from V1~8 to GND in Disable Mode					1	$\mu \mathrm{A}$
Voffset	Offset Voltage introduced by FSA7830, referring to VO		2.7 to 5.5	-10		10	mV
Vovp	Over-Voltage Protection Threshold (Low to High)	Register 06h set to '00'	2.7 to 5.5	1.87	2.00	2.15	V
Vovp,HYs	Over-Voltage Assertion Hysteresis		2.7 to 5.5		50		mV
$V_{\text {clamping }}$	Clamping Voltage on VO when OVP happens	Register 06h set to '00'	2.7 to 5.5	1.87	2.00	2.15	V
V ${ }_{\text {O, dYnamic }}$	VO Dynamic Range	$100 \mathrm{~K} \Omega$ between VO to 0.9 V , output buffer has the ability to drive the target value with maximum 1% mismatch	2.7 to 5.5	0.5		2.1	V

Note:

2. Guaranteed by Design.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, with $100 \mathrm{~K} \Omega$ and $100 \mathrm{nF}+10 \mathrm{pF}$ loading at VO , unless otherwise specified.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
Cl_{1}	Input Capacitance on V1~8 ${ }^{(3)}$	$\mathrm{F}=1 \mathrm{MHz}$	2.7 to 5.5			50	pF
$\dagger_{\text {Setting }}$	VO Settling Time after each Switching ${ }^{(3)}$	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{C}_{\mathrm{o}}=100 \mathrm{nF}+10 \mathrm{pF}$, $R_{0}=100 \mathrm{~K} \Omega$, VO reaches 99% of target value	2.7 to 5.5			200	$\mu \mathrm{s}$
tloadresponse	VO Buffer Load Response, Settling Time of Load Change ${ }^{(3)}$	Loading on VO switches from 100 nF to $\mathrm{C}_{\mathrm{o}}=100 \mathrm{nF}+10 \mathrm{pF}$, $\mathrm{R}_{\mathrm{O}}=100 \mathrm{~K}$. VO reaches 99\% of target value	2.7 to 5.5			150	ns
PSRR	Power Supply Rejection Ratio of VO from VCc	Power supply noise, $F=217 \mathrm{~Hz}$, Vpp=50 mV, $\mathrm{C}_{\mathrm{o}}=100 \mathrm{nF}+10 \mathrm{pF}, \mathrm{R}_{\mathrm{o}}=100 \mathrm{~K} \Omega$	2.7 to 5.5		70		dB
Xtalk	Cross Talk between V1~8	$\begin{aligned} & \mathrm{F}=500 \mathrm{KHz}, \mathrm{Vpp}=50 \mathrm{mV}, \\ & \mathrm{C}_{\mathrm{o}}=100 \mathrm{nF}+10 \mathrm{pF}, \mathrm{R}_{\mathrm{O}}=100 \mathrm{~K} \Omega \end{aligned}$	2.7 to 5.5		80		dB

Note:

3. Guaranteed by characterization and not tested in production.

Application Information

Interrupt operation

The \INT pin is an active low, open drain output which indicates to the host processor that an interrupt has occurred in the FSA7830 which needs attention. The IINT pin is HIGH-Z by default after power-up or device reset.

The IINT pin stays HIGH-Z in preparation of future interrupts. When an interruptible event occurs, IINT is driven LOW and is HIGH-Z again when the processor clears the interrupt by reading the interrupt registers.

Figure 5. Typical Application Sequence

Buffer \& Clamping Enable Truth Table

To prevent non-ideal waveforms on VO node, enable of Output Buffer and Clamping circuitry depends on status of multi-internal register values.
Table 2. Register Map

Registers					 Clamping Enable
Chip Enable	SW1 Enable	SW2 Enable	SW3 Enable	Output Enable	
0	x	x	x	x	0
1	0	x	x	x	0
1	x	0	x	x	0
1	1	1	x	0	0
1	1	1	x	1	1

Register Definitions

Table 3. Register Map

Address	Register Name	Type	Rst Val	Description
0×01	Device ID	RO	08	Device Version and Revision
0×02	Control	RW	00	Device Control
0×03	SWCTL	RW	00	Switch Status Control
0×04	INT	RO	00	Interrupt
0×05	INT_MASK	RW	80	Interrupt Mask
0×06	OVP	RW	00	OVP Threshold

Notes:
4. Do not use registers that are blank.
5. Values read from undefined register bits are not defined and invalid. Do not write to undefined registers.

Table 4. Register Device ID
Address: 01h
Reset Value: 0x0000_1000
Type: Read

Bits	Name	Size	Description
$7: 6$	Vendor ID	2	Vendor ID
$5: 3$	Version ID	3	Device Version ID
$2: 0$	Revision ID	3	Revision History ID

Table 5. Control
Address: 02h
Reset Value: 0x0000_0000
Type: Read/Write

Bits	Name	Size	Description
7	Chip Enable	1	$\begin{array}{l}\text { FSA7830 Enable/Shutdown } \\ \text { 0: Shutdown (all other registers, including bits<6:0> of this } \\ \text { register, reset to default value) } \\ \text { 1: Enable }\end{array}$
6	Output Enable	1	$\begin{array}{l}\text { Output Buffer Enable } \\ \mathbf{0 : ~ D i s a b l e , ~ V O ~ m a i n t a i n s ~ H i Z ~} \\ 1: \text { Enable }\end{array}$
$<5: 4>$	OVP action	2	$\begin{array}{l}\text { Actions after OVP } \\ \text { 00: Clamp output voltage to 2 V } \\ \text { (based on register 06h) } \\ 01: ~ P u l l ~ V O ~ t o ~ 0 V ~\end{array}$
$10:$ No Action			

Table 6. SWCTL
Address: 03h
Reset Value: 0x0000_0000
Type: Read/Write

Bits	Name	Size	Description
7	SW1 Enable	1	Switch 1 Enable 0 : All Switches Off 1: One switch on, status based on <6:4>
<6:4>	SW1 Control	3	Switch 1 Control 000: V1 to Vint 001: V2 to Vint 010: V3 to Vint 011: V4 to Vint 100: V5 to Vint 101: V6 to Vint 110: V7 to Vint 111: V8 to Vint
3	SW2 Enable	1	Switch 2 Enable 0: All Switches Off 1: One switch on, status based on <2:1>
<2:1>	SW2 Control	2	Switch 2 Control 00: VO to Vint 01: VO to $1 / 3 \mathrm{Vint}$ 10: VO to 2/3Vint 11: Reserved
0	SW3 Control	1	Switch 3 Control 0: SW3 OFF 1: SW3 ON

Table 7. INT
Address: 04h
Reset Value: 0x0000_0000
Type: Read/Clear

Bits	Name	Size	Description
7	OVP	1	$\mathbf{0}:$ OVP event has not occurred $1:$ OVP event has occurred
$<6: 0>$	Reserved	7	Do Not Use

Table 8. INT_MASK

Address: 05h
Reset Value: 0x1000_0000
Type: Read/Write

Bits	Name	Size	Description
7	OVP	1	0: Do not mask OVP interrupt 1: Mask OVP interrupt
$<6: 0>$	Reserved	7	Do Not Use

Table 9. OVP
Address: 06h
Reset Value: 0x0000_0000
Type: Read/Write

Bits	Name	Size	Description
<7:3>	Reserved	5	Do Not Use
<2:0>	OVP Threshold	3	Over-voltage protection threshold 000: Default $\begin{aligned} & \text { 001: }+50 \mathrm{mV} \\ & \text { 010: }+100 \mathrm{mV} \\ & 011:-250 \mathrm{mV} \\ & \text { 100: }-50 \mathrm{mV} \\ & \text { 101: }-100 \mathrm{mV} \\ & \text { 110: }-150 \mathrm{mV} \\ & 111:-200 \mathrm{mV} \end{aligned}$

The table below pertains to the WLCSP package information on the following page.

Physical Dimensions

Product	\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
FSA7830BUCX	1.56 mm	1.56 mm	0.18 mm	0.18 mm

TOP VIEW

RECOMMENDED LAND PATTERN
(NSMD PAD TYPE)

SIDE VIEWS

NOTES

A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.

DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
d.) PACKAGE NOMINAL HEIGHT IS 586 ± 39 MICRONS (547-625 MICRONS).
E. FOR DIMENSIONS D,E,X, AND Y SEE PRODUCT DATASHEET.
F. DRAWING FILNAME: MKT-UC016AF revA

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI5A3157BC6EX PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR

TC4066BP-NF HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7
MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB.112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB. 112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 59628771601EA 5962-87716022A

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

