

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
Audio Jack Send／End Detection with MIC／Video Switch

Features

Detection	Accessory Plug－In 3－or 4－Pole Audio Jack Send／End Key Pressed				
Switch Type	Microphone \＆Video				
$V_{\text {DD }}$	2.5 to 4.3 V				
THD（MIC）	0.01% Typical				
ESD（Air Gap）	16 kV				
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$				
Package	$10-\mathrm{Lead}$ UMLP				
Top Mark	$1.4 \times 1.8 \times 0.5 \mathrm{~mm}, 0.4 \mathrm{~mm} \mathrm{Pitch}$	$	$	KS	
:---	---:				
Ordering Information	FSA8029UMX				

Applications

－ 3.5 mm and 2.5 mm Audio Jacks
－Cellular Phones，Smartphones
－MP3 and PMP
Typical Application

Description

The FSA8029 is an audio jack microphone／video switch for 3 －or 4－pole accessories with send／end（S／E）detection．In addition to detection，the FSA8029 features an integrated microphone／video switch that allows the processor to configure the audio jack．The architecture is designed to allow common third－party headphones to be used for listening to music from mobile handsets，personal media players，and portable peripheral devices．
－Determines when Send／End Button Key is Pressed
－Integrates a MIC／Video Switch for 4－Pole Configuration
－Reduces Pop／Click Caused by Microphone Bias
Related Resources
－For samples and questions，please contact： Analog．Switch＠fairchildsemi．com．
－FSA8029 Demonstration Board

Figure 1．Mobile Phone Example

Pin Configuration

Figure 2. Pin Assignments (Through View)

Pin Descriptions

Name	Pin \#	Type	Description		
R_VDD	1	Output	Optional pull-up voltage, with a resistor divider, sets the reference voltage on the REF pin		
S/E2	2	Output	Indicates state of normally open (N/O) send / end key press; open-drain output requires pull-up resistor	0	Key Press ${ }^{(1)}$
				1	No Key Press ${ }^{(1)}$
SEL	3	Input	MIC / VID switch select pin	0	VID $=$ J_MIC ${ }^{(1)}$
				1	MIC $=$ J_MIC ${ }^{(1)}$
S/E1	4	Output	Indicates state of normally closed (N/C) send / end key press; open-drain output requires pull-up resistor	0	Key Press ${ }^{(1)}$
				1	No Key Press ${ }^{(1)}$
VID	6	Switch	Video switch path; connects between video source and audio jack microphone pin		
MIC	7	Switch	Microphone switch path to the CODEC microphone amplifier input		
J_MIC	8	Switch	Microphone switch path connects to the microphone, send / end key, and video of the jack pole		
REF	10	Input	Reference voltage used to detect a send / end key press through a resistor divider off R_VDD or external voltage reference		
VDD	5	Power	Supply voltage		
GND	9	Ground	Ground for both the audio jack and PCB		

Note:

1. $0=\mathrm{V}_{\mathrm{OL}}$ or $\mathrm{V}_{\mathrm{IL}} ; 1=\mathrm{V}_{\mathrm{OH}}$ or V_{IH}.

Table 1. Device Configuration in Reset and Active States

SEL	MIC	VID	R_VDD	S/E1 + S/E2
1	J_MIC	Open	VDD	Active
0	Open	J_MIC	GND	HIGH

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Units
$V_{D D}$	Supply Voltage from Battery		-0.5	5.5	V
$\mathrm{V}_{\text {Sw }}$	Switch I/O Voltage		-0.5	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{K}	Input Clamp Diode Current ${ }^{(2)}$		-50		mA
Isw	Switch I/O Current (Continuous) ${ }^{(2)}$			50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 Seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	IEC 61000-4-2 System ESD	Air Gap	16		kV
		Contact	10		
	Human Body Model, JEDEC JESD22-A114	All other Pins	5		
		$\begin{aligned} & \text { J_DET, J_MIC, VDD, } \\ & \text { VIO, GND }^{2} \end{aligned}$	8		
	Charged Device Model, JEDEC JESD22-C101	All Pins	2		

Note:

2. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Units
$V_{D D}$	Battery Supply Voltage	2.5	4.3	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
MIC Switch

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
Ron	MIC Switch On Resistance	$\mathrm{I}_{\text {OUT }}=24 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.2 \mathrm{~V}$	2.8		2.0	4.0	Ω
			3.0		1.5	3.5	
			3.3		1.2	3.0	
			3.8		1.0	2.5	
$\mathrm{R}_{\text {FLAT(ON) }}$	On Resistance Flatness	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=24 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V} \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$	2.8		0.7	1.5	Ω
			3.0		0.6	1.4	
			3.3		0.5	1.3	
			3.8		0.5	1.2	
$\mathrm{V}_{\text {IN }}$	Switch Input Voltage Range		2.5 to 4.3	0		V_{DD}	V
$\mathrm{C}_{\text {ON }}$	MIC and J_MIC Switch ON Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	2.8		15		pF
$\mathrm{C}_{\text {OFF }}$	MIC and J_MIC Switch OFF Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	2.8		8		pF

Video Switch Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
$\mathrm{R}_{\text {ON }}$	MIC Switch On Resistance	$\mathrm{l}_{\text {OUT }}=24 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V}$	2.8		1.0	1.5	Ω
			3.0		0.9	1.4	
			3.3		0.8	1.3	
			3.8		0.7	1.2	
$\mathrm{R}_{\text {FLAT(ON) }}$	On Resistance Flatness	$\begin{aligned} & \text { lout }=24 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { to } 1.2 \mathrm{~V} \end{aligned}$	2.8		0.4	0.60	Ω
			3.0		0.3	0.55	
			3.3		0.2	0.50	
			3.8		0.15	0.45	
V IN	Switch Input Voltage Range		2.5 to 4.3	0		1.5	V
Con	VID Switch On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	2.8		40		pF
CofF	VID Switch Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	2.8		10		pF

Parallel I/O

Symbol	Parameter	$\mathbf{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.	
V_{IH}	Input High Voltage (EN, SEL)	$0.44 \times \mathrm{V}_{\mathrm{DD}}$		V_{DD}	V
V_{IL}	Input Low Voltage (EN, SEL)	GND		$0.15 \times \mathrm{V}_{\mathrm{DD}}$	V
$\mathrm{PUR}_{\mathrm{S} / \mathrm{E}}$	Pull-Up Resistor on S/E	2		110	$\mathrm{~K} \Omega$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage $(\mathrm{S} / \mathrm{E})\left(\mathrm{V}_{\text {PUR }}=\right.$ Voltage of Pull-Up Resistor)			$0.2 \times \mathrm{V}_{\text {PUR }}$	V

Continued on the following page...

DC Electrical Characteristics (Continued)
All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Comparator NC Switch

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.	
$V_{\text {ReF }}$	Input Voltage on REF Pin	1		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}- \\ & 0.075 \end{aligned}$	V
$\mathrm{COM}_{\text {HYS }}$	Hysteresis of Comparator "-" Terminal		50		mV

Comparator NO Switch

Symbol	Parameter	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {comp }}$	Comparator Threshold for Send / End Sensing	2.5 to 4.3		$0.07 \times V_{\text {DD }}$		V
$\mathrm{COM}_{\text {HYS }}$	Hysteresis of Comparator "+" Terminal			50		mV

Current

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
loff	Off-State Leakage Current	$\begin{aligned} & \mathrm{J}=\mathrm{MIC}=1 \mathrm{~V}, 4.3 \mathrm{~V}, \\ & \text { MIC or } \mathrm{VID}=4.3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	4.3	-15		15	nA
I_{N}	Input Leakage Current	Inputs 0 to 4.3V	0 to 4.3			1	$\mu \mathrm{A}$
ICC-EN	Low-Power Mode	EN = LOW	2.5 to 4.3		10		nA
$I_{\text {cc-VID }}$	Current During Video Mode	Active Current, SEL = LOW	2.5 to 4.3		10		nA
Icc-mic	Current During Microphone Mode	Active Current, $\mathrm{SEL}=\mathrm{HIGH}$	2.5 to 4.3		20		$\mu \mathrm{A}$

AC Electrical Characteristics

All typical values are for $\mathrm{V}_{C C}=3.3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
MIC Switch

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
THD	Total Harmonic Distortion	$\begin{aligned} & R_{T}=600 \Omega, V_{S W}=0.5 \mathrm{~V}_{\mathrm{PP}}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=2.2 \mathrm{~V} \end{aligned}$	2.8		. 003		\%
OIRR	Off Isolation	$\begin{aligned} & \mathrm{f}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=32 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{T}}=32 \Omega \end{aligned}$	2.8		-100		dB
$\mathrm{X}_{\text {taLk }}$	Crosstalk from MIC to VID	$f=1 \mathrm{MHz}, R_{L}=100 \Omega$	2.8		-67		dB

Video Switch Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
D_{G}	Differential Gain	$\mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$	2.8		. 09		\%
D_{P}	Differential Phase	$R_{L}=150 \Omega, f=3.58 \mathrm{MHz}$	2.8		. 13		-
OIRR	Off Isolation	$f=10 \mathrm{MHz}, R_{L}=150 \Omega$,	2.8		-45		dB
$\mathrm{X}_{\text {taLK }}$	Crosstalk from VID to MIC	$\begin{aligned} & \mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{IN}}=10 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$	2.8		-65		dB

Parallel I/O

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make Time		2.5 to 4.3		120		ns
$\mathrm{t}_{\text {SEL-Com-on }}$	Select to Comparator On	SEL LOW \rightarrow HIGH to Comparator On	2.5 to 4.3		10		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SEL-COM-OFF }}$	Select to Comparator Off	SEL HIGH \rightarrow LOW to Comparator Off	2.5 to 4.3		20		ns
t_{ON}	Switch Turn-On Time		2.5 to 4.3		40		ns
toff	Switch Turn-Off Time		2.5 to 4.3		15		ns
$\mathrm{t}_{\text {_IMIC-S/E }}$	Propagation Delay from Comparator Trigger to S/E Output	J_MIC > REF from LOW \rightarrow HIGH J_MIC < REF from HIGH \rightarrow LOW	2.5 to 4.3		10		$\mu \mathrm{s}$

Power

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
PSRR	Power Supply Rejection Ratio	Power Supply Noise at $300 \mathrm{Mv}_{\mathrm{pp}}$, Measured $10 / 90 \%, \mathrm{f}=217 \mathrm{~Hz}$	2.8		-100		dB

Physical Dimensions

Figure 3. 10-Lead, UMLP Package
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package
FSA8029UMX	-40 to $+85^{\circ} \mathrm{C}$	KS	10 -Lead $1.4 \times 1.8 \times 0.55 \mathrm{~mm}, 0.4 \mathrm{~mm}$ Pitch, Ultrathin Molded Leadless Package (UMLP)

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch ICs - Various category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
CPC7514Z BCM56440XB0IFSBG NL3S325FCT2G 89H48T12G2ZCBLG ADG5462FBCPZ-RL7 ADG5462FBRUZ LTC1043CN\#PBF LTC1470ES8\#PBF LTC1470CS8\#PBF LTC1315CG\#PBF 74HC4053N 74HC139N 74HC138N XD74LS138 XD74LS139 XD74LS148 $\underline{\text { XD74LS147 XD4051 XD4052 XD4053 XD14051 XD14052 XD14053 XD74LS151 XD74HC4514Z XD4514 XD14514 CPC7512Z }}$ CPC7592BCTR MAX4936ACTO+ HT18LG-G PI4MSD5V9543ALEX MD0100DK6-G MIC2560-1YWM MIC2560-0YWM NJM2750M NJM2521M PCA9848PWJ FSA8009UMX FSA8028UMX FSA8039AUMSX FSA8049UCX FSA8108BUCX FSA850UCX BD3375KVCE2 74F138D $74 \mathrm{HC} 4051 \mathrm{M} / \mathrm{TR}$ 74HC138M/TR $\underline{74 \mathrm{HC} 4053 \mathrm{M} / \mathrm{TR}}$ 74HC4052M/TR

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

