

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
Features

- Detection:
- Accessory Plug-In
- Send / End Key Press
- Impedance Detection
- Prevents False Detection due to Moisture
- $V_{D D}: 3.0 \mathrm{~V}$ to 4.5 V
- $\mathrm{V}_{10}: 1.6 \mathrm{~V}$ to V_{DD}
- THD (MIC): 0.01\% Typical
- 15 kV Air Gap ESD
- Detects 7 Steps of Headset Impedance
- Integrates LDO for MIC Bias Circuit
- MIC Switch Removes Audio Jack "Pop" and "Click" Caused by MIC Bias

Applications

- Any Device with 3.5 mm and 2.5 mm Audio Jack
- Cellular Phones, Smart Phones, and Tablets
- MP3, GPS, and PMP

Figure 1. Block Diagram

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FSA8069UCX ${ }^{(1)}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MX	12-Ball WLCSP, $1.415 \mathrm{~mm} \times 1.615 \mathrm{~mm}$, 0.4 mm Pitch	Tape \& Reel

Notes:

1. Includes backside lamination.

Typical Application Diagram

Figure 2. System Diagram

Notes:

2. $2.2 \mathrm{k} \Omega$ can generally be used in applications to bias the accessory microphone. Two separate resistors totaling $2.2 \mathrm{k} \Omega$ with a large capacitor between them can improve noise rejection performance, as shown in Figure 7.
3. A DC-blocking capacitor (typically $1 \mu \mathrm{~F}$) should be used when the codec requires AC-coupled input only. This capacitor can be removed and be tied to directly without C1 if the MICIN of the codec supports DC-coupled input.
4. A pull-down resistor allows the FSA8069 to detect Hi-Z (open cable) type accessories due to J_DET contact to left when an accessory is inserted.

Pin Configuration

Figure 3. Pin Assignment (Through View)

Pin Definitions

Name	Pin \#	Type	Description
VDD	A1	Power	Device supply (3.0 V to 4.5 V)
VIO	C3	Power	I/O supply (1.6 V to VDD)
LDO	B1	Power	LDO output (2.8 V)
J_DET	D3	Detection Input	Input from the audio jack; plug insert / removal detection pin
MIC	D1	Signal Path	Microphone switch path that connects to the microphone input of the codec
J_MIC	D2	Signal Path	Microphone switch path that connects to the audio jack
SDA	B3	DATA	I 2 C data
SCL	A3	DATA	I 2 C clock
INTB	A2	Output	Interrupt output LOW: interrupt is asserted (active) HIGH: interrupt is not asserted
K/P	B2	Output	Indicates state of headset key for a 4-pole jack when a key is being pressed HIGH: Key is being pressed LOW: Key is not being pressed
GND	C1, C2	Power	Device ground

Application Information

Moisture Detection

Moisture in the audio jack can cause the phone to incorrectly route audio signals to the audio jack rather than the phone speaker or microphone. Users perceive this as a dropped call or muted phone. The FSA8069 protects against this type of false plug insertion notification and asserts a Moisture Change interrupt in Interrupt1 (0x04h) Register.

Figure 4. Moisture Impedance Detection

Music Mode

When a 4-pole headset is inserted into the audio jack and a music/listening application is used, the MIC bias is normally enabled for headset button press detection (i.e. mute, volume change, etc.). This consumes power due to a constant path from the MIC bias resistor and microphone in the headset to GND. Fairchild has developed a Music Mode to enable the MIC switch periodically to monitor for a pressed button. This results in a power savings for battery-sensitive devices, such as cell phones or MP3 players. The FSA8069 enters Music Mode when the Music Mode Enable bit in CONTROL(02h) is set and a plug is inserted,. Music Mode reduces MIC bias current by approximately 90\% with the default Music Mode timing (OBh) register value.

Figure 5. MIC Bias Leakage Path

$\mathbf{R}_{\mathrm{KEY}} \leq 1100 \Omega$

Figure 6. Example Key-Press Resistor Calculations and Values

Recommended LDO Bias Circuit and MIC Switch PCB Layout

PCB layout can degrade the audio quality and be a contributory factor in audible noise coupling issues, high-frequency noise (ESD/ EMI) issues, and signal losses. To avoid unexpected noise issues and to achieve stable regulator output, all external components should be placed as close to the FSA8069 as possible.

Figure 7. MIC Bias and MIC Switch Circuit

Figure 8. Recommended PCB Layout Placement

Decrease the spacing between the traces for MIC and ground signals between the audio jack to increase the inductive coupling of these signals. In effect, this creates a low-frequency band-pass filter that shunts ESD energy to ground before it reaches internal components. Where feasible, lay the MIC trace as a shielded stripline; as shown in Figure 9.

Figure 9. MIC PCB Trace as Shield Strip Line

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{10}$	Supply Voltage from Battery		-0.5	6.0	V
$\mathrm{V}_{\text {Sw }}$	Switch I/O Voltage (MIC, J_MIC)		-0.5	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$V_{\text {JD }}$	Input Voltage for J_DET Input		-1.5	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{K}	Input Clamp Diode Current		-50		mA
Isw	Switch I/O Current			50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature (Soldering, 10 Seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	IEC 61000-4-2 System ESD	Air Gap	15		kV
		Contact	8		
	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	J_DET, J_MIC, V ${ }_{\text {DD }}$, V ${ }_{\text {IO }}$, GND	8		
		All Other Pins	2		
	Charged Device Model, JEDEC JESD22-C101	All Pins	1		

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{DD}	Battery Supply Voltage	3.0	4.5	V
$\mathrm{~V}_{10}$	Parallel I/O Supply Voltage	1.6	$\mathrm{~V}_{\mathrm{DD}}$	V
V_{SW}	Switch Input Voltage (J_MIC, MIC)	0	3.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	$\circ \mathrm{C}$
$\mathrm{J} \mathrm{_DET}_{\text {Audiov }}$	Audio Voltage Range on J_DET Pin	-1.4	+1.4	V
$\mathrm{C}_{\text {out }}$	LDO Output Capacitance	220		nF
$\mathrm{R}_{\mathrm{J} \mathrm{_DET}}$	Resistance on Audio Accessory Left Channel to Generate Valid Attach		15.75	$\mathrm{k} \Omega$

DC Electrical Characteristics

All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{IN} _v D D}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN} _ \text {vII }}=0.1 \mu \mathrm{~F}$, and $\mathrm{C}_{\text {out_LDO }}=0.22 \mu \mathrm{~F}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
MIC Switch							
Ron	MIC Switch On Resistance	3.8	$\begin{aligned} & l_{\text {lout }}=30 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {IN }}=2.2 \mathrm{~V} \end{aligned}$		0.50		
$\mathrm{R}_{\text {FLAT(ON) }}$	On Resistance Flatness	3.8	$\begin{array}{\|l} \mathrm{l}_{\text {lout }}=30 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{IN}}=1.6 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \end{array}$		0.30	1.50	
loff	Power-Off Leakage Current Through Switch	0	MIC, J_MIC Ports $\mathrm{V}_{\mathrm{A}}=4.3 \mathrm{~V}$			3	$\mu \mathrm{A}$
Ion	Input Leakage Current MIC, J_MIC switch ON	3.0 to 4.5	Inputs $\mathrm{V}_{\text {mic }}$, V Jmic=3.0 V, Other Side of Switch Port Floating			1	$\mu \mathrm{A}$
loz	Off Leakage Current	4.5	MIC and J_MIC Port $\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$			1	$\mu \mathrm{A}$

Key Press

$\mathrm{V}_{\text {COMP }}$	Comparator Threshold for Key Detection	3.0 to 4.5	Detection Threshold (0Fh) $[3: 0]=1001$ $(790 \mathrm{mV})$	0.79	V
J_DET					
J_DET ${ }_{\text {Tolerance }}$	Tolerance between Impedance Detection Steps (see Table 1)	3.0 to 4.5	Impedance Detection Mode	5\%	

Parallel I/O (KP, INTB)

V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}=-100 \mu \mathrm{~A}}$	$0.8 \times \mathrm{V}_{\mathrm{IO}}$			V
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}=+100 \mu \mathrm{~A}}$			$0.2 \times \mathrm{V}_{\mathrm{IO}}$	

I^{2} C Controller DC Characteristics Fast Mode (400 kHz)

V_{IL}	Low-Level Input Voltage			$0.3 \times \mathrm{V}_{1 \mathrm{O}}$	V	
V_{IH}	High-Level Input Voltage		$0.7 \times \mathrm{V}_{10}$		V	
$\mathrm{~V}_{\mathrm{OL} 1}$	Low-Level Output Voltage at 3 mA Sink Current (Open-Drain)	$\mathrm{V}_{10}>2 \mathrm{~V}$	0		0.4	V
	$\mathrm{~V}_{10}<2 \mathrm{~V}$		$0.2 \times \mathrm{V}_{10}$	V		
li2C	Input Current of I2C_SDA and I2C_SCL Pins, Input Voltage 0.26 V to 2.34 V		-10	+10	$\mu \mathrm{~A}$	

Current

$\mathrm{I}_{\text {DD-SLNA }}$	Battery Supply Sleep Mode Current with No Accessory Attached and LDO Disabled	3.0 to 4.5	Static Current during Sleep Mode		1.5		$\mu \mathrm{A}$
Idd-slwa	Battery Supply Sleep Mode Current with Accessory Attached	3.0 to 4.5	Active Current		30		$\mu \mathrm{A}$
IDD_LDO	LDO Quiescent Current	3.0 to 4.5	$\mathrm{I}_{\text {LOAd }}=0 \mathrm{~mA}$, Cout $=0 \mathrm{pF}$, LDO Enabled		100		$\mu \mathrm{A}$
LDO							
$V_{\text {OUT }}$	Output Voltage (Output=2.8 V)	3.0 to 4.5	$\mathrm{l}_{\text {LOAD }}=1 \mathrm{~mA}$	2.77	2.80	2.83	V
lout	Maximum Output Current	3.0 to 4.5		5			mA

AC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathbb{I N} _ \text {vdd }}=1.0 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N} _ \text {vio }}=0.1 \mu \mathrm{~F}$, and $\mathrm{C}_{\text {out_LDO }}=0.22 \mu \mathrm{~F}$ unless otherwise specified. Not production tested.

Symbol	Parameter	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	Conditions	Typical	Unit
MIC Switch					
THD	Total Harmonic Distortion	3.0	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}+0.5 \mathrm{~V}_{\mathrm{pp}} \text { Sine } \end{aligned}$	0.01	\%
OIRR	Off Isolation	3.0	$\begin{aligned} & \mathrm{f}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{T}}=600 \Omega \end{aligned}$	-85	dB
PSRRsw	Power Supply Rejection Ratio (at 217 Hz)	4.0	Power Supply Noise 300 mV ${ }_{\text {PP }}$, 87.5\% Duty Cycle,	-80	dB
Timing Characteristics					
tpoll	ON Time of MIC Switch for Sensing SEND / END Key Press Oscillator Stable Time	3.0 to 4.5	$I^{2} \mathrm{C}$ Register Adjustable (tpoll ${ }^{\text {[3:0]}}$)	15 (Default)	ms
twait	Period of MIC Switching for Sensing SEND / END Key Press	3.0 to 4.5	$I^{2} \mathrm{C}$ Register Adjustable (twait[3:0])	150 (Default)	ms
$\mathrm{t}_{\text {DET_IN }}$	Debounce Time after J_DET Changes State from HIGH to LOW	3.0 to 4.5	1^{2} C Register Adjustable ($\mathrm{t}_{\text {DET_IN }}$ [3:0])	25 (Default)	ms
$\mathrm{t}_{\text {MIC_SW_OPEN }}$	Time of MIC Switch Open after J_DET Changes State from LOW to HIGH	3.0 to 4.5		30	$\mu \mathrm{s}$
$\mathrm{t}_{\text {KBK }}$	Debounce Time for Sensing SEND / END Key Press / Release	3.0 to 4.5	$\mathrm{I}^{2} \mathrm{C}$ Register Adjustable ($\mathrm{t}_{\text {квк }}[3: 0]$)	30 (Default)	ms
$t_{\text {det_rem }}$	Debounce Time from Changing J_DET State from LOW to HIGH to Detect Jack Removal	3.0 to 4.5	$I^{2} \mathrm{C}$ Register Adjustable (tdet_rem[3:0])	1 (Default)	ms
textra	Additional Time to Keep Switch Closed in Music Mode after Key Release	3.0 to 4.5		600	ms
$\mathrm{t}_{\text {REG_DFT }}$	Time to Set Registers to Defaults from Falling and Rising V_{10}	3.0 to 4.5		1	ms
LDO					
PSRRLDo	Power Supply Rejection Ratio (at 217 Hz)	4.5	Power Supply Noise 300 mV ${ }_{\text {pp }}$, 87.5\% Duty Cycle, Cout=1 $\mu \mathrm{F}$	-80	dB

$I^{2} \mathrm{C}$ Specifications

Symbol	Parameter	Fast Mode		
		Min.	Max.	Unit
$\mathrm{f}_{\mathrm{SCL}}$	I2C_SCL Clock Frequency	0	400	kHz
thd;sta	Hold Time (Repeated) START Condition	0.6		$\mu \mathrm{s}$
tıow	Low Period of I2C_SCL Clock	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HIGH}}$	High Period of I2C_SCL Clock	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {Su; }}$	Set-up Time for Repeated START Condition	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; DAT }}$	Data Hold Time	0	0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Su; DAT }}$	Data Set-up Time ${ }^{(6)}$	100		ns
tr_{r}	Rise Time of I2C_SDA and I2C_SCL Signals ${ }^{(6)}$	$20+0.1 C_{b}$	300	ns
t_{f}	Fall Time of I2C_SDA and I2C_SCL Signals ${ }^{(6)}$	$20+0.1 C_{b}$	300	ns
$\mathrm{t}_{\text {Su; }}$	Set-up Time for STOP Condition	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {BuF }}$	Bus-Free Time between STOP and START Conditions	1.3		$\mu \mathrm{s}$
tsp	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns

Notes:
6. A Fast-Mode $I^{2} C$-Bus $®$ device can be used in a Standard-Mode $I^{2} C$-Bus system, but the requirement tsu;DAT \geq 250 ns must be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal. If a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line t_{r} max $+\mathrm{t}_{\text {SU;DAT }}=1000+250=1250 \mathrm{~ns}$ (according to the Standard Mode $\mathrm{I}^{2} \mathrm{C}$-Bus specification) before the I2C_SCL line is released.
7. C_{b} equals the total capacitance of one bus line in pF . If mixed with high-speed devices, faster fall times are allowed according to the $\mathrm{I}^{2} \mathrm{C}$ specification.

Figure 10. Definition of Timing for Full-Speed Mode Devices on the $I^{2} C$ Bus

Table 2. $I^{2} C$ Slave Address

Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address	8	0	1	0	0	0	1	1	Read/Write

Register Map

Addr.	Register	Type	Reset Values	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2
01H	Device ID	R	0000XXXX	Version ID				Reser	
02H	Control	R/W	XXXX0010	Reserved	Reserved	Reserved	Reserved	LDO Enable	Key Detection Enable
03H	Status	R	XXXX0000	Reserved	Reserved	Reserved	Reserved	Impedance Attached Status	Impedance stat 000: Impedan 001: Impedan 010: Impedan 011: Impedan 100: Impedan 101: Impedan 110: Impedan 111: Moisture
04H	Interrupt 1	R/C	XXXXX000	Reserved	Reserved	Reserved	Reserved	Reserved	Moisture Change
05H	Interrupt 2	R/C	XX000000	Reserved	Reserved	Reserved	Reserved	Key Release	Reserved
07H	Interrupt Mask 1	R/W	XXXXX000	Reserved	Reserved	Reserved*	Reserved*	Reserved*	Moisture Change Mask
08H	Interrupt Mask 2	R/W	XX000000	Reserved	Reserved	Reserved	Reserved	Key Release Mask	Reserved
OAH	J_DET Timing	R/W	00001001	Insert (tdet-in)				Removal	
OBH	Music Mode Timing	R/W	00101000	Key-Press Polling Time (tpoll)				Key-Press Waiti	
OCH	Key Debounce Timing	R/W	XXXX0101	Reserved	Reserved	Reserved	Reserved	Key-Press Deboul	
OEH	Reserved	R/W	XXXX1000	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
0FH	Detection Thresholds	R/W	10011000	Key Threshold [3:0]				Reserved	Reserved
10H	Reset	R/W	XXXXXXX0	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

Notes:

8. Do not use registers that are blank and reserved.
9. Write " 0 " to undefined register bits.
10. Values read from undefined register bits are not defined and are invalid.

Register Definition
Table 3. Address: 01H Type: Read

DEVICE ID		Default	xxxx0000	
Bit \#	Name	Size		Function
$3: 0$	Reserved	4		Do Not Use
$7: 4$	Version ID	4	$\mathbf{0 0 0 0}=$ Version $\mathbf{0 . 0}$ 0001 = Version 0.1	

Table 4. Address: $\mathbf{0 2 H}$
Type: Read/Write

CONTROL			Default	xxxx0010
Bit \#	Name	Size	Function	
0	Music Mode Enable	1	0: Music Mode disabled (MIC switch keep closed or opened) 1: Music Mode enabled (MIC switch repeats open and close if plug inserted completely)	
1	Reserved	1	Do Not Use Reserved for future applications, default =1	
2	Key Detection Enable	1	0: Key detection disabled (Default) 1: Key detection enabled	
3	LDO Enable	1	0: LDO disabled (Default) 1: LDO enabled	
7:4	Reserved	4		

Table 5. Address: 03H

STATUS			Default xxxx0000
Bit \#	Name	Size	Function
2:0	Impedance Status	3	Only valid at Impedance Accessory Attached bit set 000: Impedance Type 0 (16 Ω) (Default) 001: Impedance Type 1 (32Ω) 010: Impedance Type $2(64 \Omega)$ 011: Impedance Type 3 (150 Ω) 100: Impedance Type 4 (300Ω) 101: Impedance Type 5 (600Ω) 110: Impedance Type 6 (2k Ω) 111: Moisture detected
3	Impedance Accessory Attached	1	0: Accessory not attached (Default) 1: Accessory attached and Impedance Status[2:0] valid
7:4	Reserved	4	Do Not Use

Table 6. Address: 04H
Type: Read/Clear

INTERRUPT 1			Default	xx000000
Bit \#	Name	Size	Function	
0	Plug Insertion	1	0: Plug Insertion not detected (Default) 1: Plug Insertion detected	
1	Plug Removal	1	0: Plug removal not detected (Default) 1: Plug removal detected	
2	Moisture Change	1	0: Moisture status not changed (Default) 1: Moisture status changed	
7:4	Reserved	4		

Table 7. Address: 05H
Type: Read/Clear

INTERRUPT 2		Default	xxxx0xx0	
Bit \#	Name	1	0: Key not pressed (Default) 1: Key pressed	
0	Key Press	2		Do Not Use
$2: 1$	Reserved	1	0: Key not released (Default) 1: Key released	
3	Key Release	4		Do Not Use
$7: 4$	Reserved			

Table 8. Address: 07H
Type: Read/Write

ITERRUPT MASK1			Default	xxxxx000
Bit \#	Name	Size	Function	
0	Plug Insertion Mask	1	0: Plug insert detection not masked (Default) 1: Plug insert detection masked	
1	Plug Removal Mask	1	0: Plug removal detection not masked (Default) 1: Plug removal detect masked	
2	Moisture Change Mask	1	0: Moisture change not masked (Default) 1: Moisture change masked	
$7: 3$	Reserved	5	Dot Use	

Table 9. Address: 08 H

INTERRUPT MASK 2			Default	xxxx0xx0	
Bit \#	Name	Size	Function		
0	Key Press Mask	1	0: Key press not masked (Default) $1:$ Key press masked		
$2: 1$	Reserved	2			
3	Key Release Mask	1	$\mathbf{0}$: Key release not masked (Default) 1: Key release masked		
$7: 4$	Reserved	4	Do Not Use		

Table 10. Address: OAH

J_DET TIMING			Default	00001001
Bit \#	Name	Size	Function	
3:0	$t_{\text {det_REm }}[3: 0]$ Plug Removal Debounce Timing	4	0000: $100 \mu \mathrm{~s}$ 0001: $200 \mu \mathrm{~s}$ 0010: $300 \mu \mathrm{~s}$ 0011: $400 \mu \mathrm{~s}$ 0100: $500 \mu \mathrm{~s}$ 0101: $600 \mu \mathrm{~s}$ 0110: $700 \mu \mathrm{~s}$ 0111: $800 \mu \mathrm{~s}$ 1000: $900 \mu \mathrm{~s}$ 1001: $1000 \mu \mathrm{~s}$ 1010: $1200 \mu \mathrm{~s}$ 1011: $1400 \mu \mathrm{~s}$ 1100: $1600 \mu \mathrm{~s}$ 1101: $1800 \mu \mathrm{~s}$ 1110: $2000 \mu \mathrm{~s}$ 1111: $5000 \mu \mathrm{~s}$	
7:4	$t_{\text {DET_I_I }}[3: 0]$ Plug Insertion Debounce Time	4	0000: $\mathbf{2 5} \mathrm{ms}$ 0001: 50 ms 0010: 75 ms 0011: 100 ms 0100: 125 ms 0101: 150 ms 0110: 175 ms 0111: 200 ms 1000: 225ms 1001: 250 ms 1010: 275 ms 1011: 300 ms 1100: 325 ms 1101: 350 ms 1110: 375 ms 1111: 400 ms	

Table 11. Address: OBH

MUSIC MODE TIMING			Default	00101000
Bit \#	Name	Size	Function	
3:0	$\mathbf{t}_{\text {WaIt }}[3: 0]$ Key Press Waiting Time in Music Mode	4	$0000: 5 \mathrm{~ms}$ $0001: 10 \mathrm{~ms}$ $0010: 15 \mathrm{~ms}$ $0011: 20 \mathrm{~ms}$ $0100: 25 \mathrm{~ms}$ $0101: 30 \mathrm{~ms}$ $0110: 50 \mathrm{~ms}$ $0111: 100 \mathrm{~ms}$ $1000: 150 \mathrm{~ms}$ (Default) $1001: 200 \mathrm{~ms}$ $1010: 250 \mathrm{~ms}$	

MUSIC MODE TIMING			Default	00101000
Bit \#	Name	Size	Function	
			1011: 300 ms 1100: 350 ms 1101: 400 ms 1110: 450 ms 1111: 500 ms	
7:4	$t_{\text {PoLL }}[3: 0]$ Key Press Polling Time in Music Mode	4	0000: 5 ms 0001: 10 ms 0010: 15 ms (Default) 0011: 20 ms 0100: 25 ms 0101: 30 ms 0110: 35 ms 0111: 40 ms 1000: 45 ms 1001: 50 ms 1010: 60 ms 1011: 70 ms 1100: 80 ms 1101: 90 ms 1110: 100 ms 1111: 150 ms	

Table 12. Address: 0 CH
Type: Read/Write

MIC DEBOUNCE TIME			Default	xxxx0101
Bit \#	Name	Size	Function	
3:0	```tKBK[3:0] Key Press/ Release Debounce Timing```	4	0000: 5 ms 0001: 10 ms 0010: 15 ms 0011: 20 ms 0100: 25 ms 0101: 30 ms (Default) 0110: 35 ms 0111: 40 ms 1000: 45 ms 1001: 50 ms 1010: 55 ms 1011: 60 ms 1100: 65 ms $1101: 70 \mathrm{~ms}$ $1110: 75 \mathrm{~ms}$ 1111: 80 ms	
7:4	Reserved	5		

Table 13. Address: OFH Type: Read/Write

DETECTION THRESHOLD			Default	1001xxxx
Bit \#	Name	Size	Function	
3:0	Reserved	4		
7:4	Key [3:0] Key Threshold	4	0000: 660 mV 0001: 680 mV 0010: 700 mV 0011: 710 mV 0100: 730 mV 0101: 750 mV 0110: 760 mV 0111: 770 mV 1000: 780 mV 1001: 790 mV (Default) 1010: 800 mV 1011: 810 mV 1100: 830 mV 1101: 850 mV 1110: 870 mV 1111: 890 mV	

Table 14. Address: 10H
Type: Read/Write

RESET			Default	xxxxxxx0
Bit \#	Name	Size	Function	
0	Reset	4	0: No Change 1: Reset Device - Reset all I ${ }^{2}$ C register to default values.	
$7: 1$	After rest, this bit is automatically cleared to '0'	Reserved	7	

Package Specific Dimensions

\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
1.615 mm	1.415 mm	0.3075 mm	0.2075 mm

REVISIONS			
REV	DESCRIPTION	DATE	APP'D / SITE
1	Initial drawing release.	$8-19-09$	L. England / FSME

TOP VIEW

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

BOTTOM VIEW

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS ± 39 MICRONS (547-625 MICRONS).
f. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILENAME: MKT-UC012ACrev1.

APPROVALS	DATE					
${ }^{\text {orame }}$ L. England	8-19-09					
${ }^{\text {Dofac. OMK }}$ S. Martin	8-19-09	12BALL WLCSP, 3X4 ARRAY 0.4MM PITCH, 250UM BALL				
Prooser		scale	$\begin{aligned} & { }^{\mathrm{s} 2 \mathrm{E}} \\ & \mathrm{~N} / \mathrm{a} \end{aligned}$	MKT	12AC	ReV 1
${ }^{\text {mam }}$		DO NOT	SCALE	WNG	SHEET	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

