

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA806－USB2．0 High－Speed（480Mbps），UART，and Audio Switch with Negative Signal Capability

Features

－3：1 Switch Handles：
－Audio Headsets
－UART
－Up to Two High－and Low－Speed USB Data
－Negative－Swing－Capable Audio Channel
－Built－in Termination Resistors for Audio Pop Reduction
－Simple Switch Control Using Two Select Pins

Applications

－Cell Phones，MP3 Players，PDAs

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package
FSA806UMX	-40 to $+85^{\circ} \mathrm{C}$	KN	12－Lead Quad， $1.8 \times 1.8 \mathrm{~mm}$ Ultrathin Molded Leadless Package（UMLP）

Figure 1．Functional Block Diagram

Figure 2. Typical Application

Functional Description

The FSA806 USB2.0 accessory switch is designed to consolidate wired accessories for portable devices, such as cellular telephones and portable audio players. The benefits of consolidation include reduced space requirements from a reduction of connectors and their size. The micro-USB connector, for example, reduces connector height and depth, allowing for slimmer overall designs. Using the USB industry standard and a common connector type, for accessories such as chargers and headsets, greatly reduces the waste associated with new phone purchases by allowing re-use of the accessories.
Using just five wires for all connection types considerably reduces the cost of wired accessories and simplifies their construction. The FSA806 facilitates adopting this methodology because it is designed to redirect the DP/DM pins from the USB connector to one of three ports at the baseband's discretion.

Applications with Multiple USB Controllers

When operating with two USB controllers, it is recommended to configure the switches to OPEN before switching to the other (second) USB interface. The OPEN setting duration should be long enough for the accessory to go to a SE0 state, when the switch is set to the other (second) USB port, the new controller reenumerates.

Mode Descriptions

The FSA806 select pins control the switching operations, SEL[0] and SEL[1] described in Table 1

Table 1. Selection Truth Table

SEL[1]	SEL[0]	Switch Action	Description
0	0	OPEN	Open all switch paths (device in low-power mode)
0	1	USB1, UART	Closes USB1 path to D+/D-, default condition ${ }^{(1)}$ - DP_CON connected to DP_HOST1 - DM_CON connected to DM_HOST1
1	0	USB2, UART	Closes USB2 path to D+/D- - DP_CON connected to DP_HOST2 - DM_CON connected to DM_HOST2
1	1	AUDIO	Closes audio path to D+/D- only -DP_CON connected to R_HOST - DM_CON connected to L_HOST

Notes:

1. The SELECT pins are CMOS inputs and should not be left in a floating condition. Some applications require a UART path be in the CLOSED position on power-up for initial programming of the device under test. If that condition is desired, the two SELECT pins should be pulled to the correct levels with external resistors that should exceed $100 \mathrm{~K} \Omega$ to reduce the static power consumption. In other applications, adding weak pull-down resistors to GND defaults the device to all paths open (low-power mode).
2. When the audio switch is in the OPEN position, the R and L are terminated to GND with internal termination resistors to discharge any stray capacitance that could cause audio pop.

Pin Configuration

Figure 3. 12-Pin, UMLP Pin Assignments (Top-Through View)

Pin Descriptions

Name	Pin \#	Description
USB, UART Interface		
DP_HOST1	3	D+ signal, dedicated USB port to be connected to the resident USB or UART transceiver on the phone.
DM_HOST1	4	D- signal, dedicated USB port to be connected to the resident USB or UART transceiver on the phone.
DP_HOST2	5	D+ signal, dedicated USB port to be connected to the resident USB or UART transceiver on the phone.
DM_HOST2	6	D- signal, dedicated USB port to be connected to the resident USB or UART transceiver on the phone.
Audio Interface		
R_HOST	7	Right audio channel from phone audio codec.
L_HOST	8	Left audio channel from phone audio codec.
Power Interface		
$\mathrm{V}_{\text {cc }}$	2	Input voltage supply pin to be connected to the phone battery output.
Connector Interface		
GND	9	Ground
DP_CON	11	Connected to the USB connector D+ pin; depending on the FSA806 signaling mode, this pin can share DP_HOST1, DP_HOST2 or R_HOST signals.
DM_CON	10	Connected to the USB connector D- pin; depending on the FSA806 signaling mode, this pin can share DM_HOST1, DM_HOST2 or L_HOST signals.
Switch Control		
SEL[1:0]	12, 1	Switch selection pins; refer to Table 1 for truth table.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
V_{Cc}	Supply Voltage from Battery / Baseband			-0.5	6.0	V
$\mathrm{V}_{\text {sw }}$	Switch I/O Voltage	USB		-0.5	$\mathrm{V}_{\text {BUS }}+0.5$	V
		Stereo/Mono Audio Path Active		Vcc-8.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	
		All Other Channels		-0.5	$\mathrm{V}_{C C}+0.5$	
$\mathrm{I}_{\text {K }}$	Input Clamp Diode Current			-50		mA
Isw	Switch I/O Current (Continuous)	USB			50	mA
		Audio			60	
		All Other Channels			50	
$I_{\text {SWPEAK }}$	Peak Switch Current (Pulsed at 1 ms Duration, <10\% Duty Cycle)	USB			150	mA
		Audio			150	mA
		All Other Channels			150	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature				+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 Seconds)				+260	${ }^{\circ} \mathrm{C}$
ESD	IEC 61000-4-2 System	USB Connector Pins (D+, D-, V ${ }_{\text {Bus }}$)	Air Gap		15	kV
			Contact		8	
	Human Body Model, JEDEC JESD22-A114		All Pins		3	
	Charged Device Model, JEDEC JESD22-C101		All Pins		2	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V_{CC}	Battery Supply Voltage	2.7	4.4	V	
$\mathrm{~V}_{\mathrm{SW}}$	Switch I/O Voltage	USB/UART Path Active	0	4.4	V
		Audio Path Active	$\mathrm{V}_{\mathrm{CC}}-7$	2.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$	

Switch Path DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
Host Interface Pins (SEL[2:0])							
V_{IH}	Input High Voltage	3.2 to 4.4		1.3			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	3.2 to 4.4				0.7	V
I_{N}	Control Input Leakage	0 to 4.4	$V_{\text {sw }}=0$ to $V_{\text {cc }}$	-1		1	$\mu \mathrm{A}$
$\mathrm{l}_{\text {Oz }}$	Off-State Leakage	4.4	$0 \leq$ DP_CON, DM_CON, DP_HOSTn, DM_HOSTn, R_HOST, L_HOST $\leq 3.6 \mathrm{~V}$	-2		2	$\mu \mathrm{A}$
Switch Off Characteristics							
$\mathrm{I}_{\text {OFF }}$	Power-Off Leakage Current	0	All Ports Except MIC \& Audio path $\mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}$ to 4.4 V , Figure 8			10	$\mu \mathrm{A}$
USB Switch On Paths							
$\mathrm{R}_{\text {ONUSB }}$	HS USB Range Switch On Resistance	3.2 to 4.4	$V_{D P _C O N / D M}$ con $=0 \mathrm{~V}, 0.4 \mathrm{~V}$, $\mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA}$, Figure 7		6	9	Ω
$\mathrm{R}_{\text {ONUART }}$	UART Range Switch On Resistance	3.2 to 4.4	$V_{\text {DP_con/DM_con }}=0 \mathrm{~V}, 3.2 \mathrm{~V}$, $\mathrm{l}_{\mathrm{ON}}=8 \mathrm{~mA}$, Figure 7		8		Ω
Audio R/L Switch On Paths							
$\mathrm{R}_{\text {ONAUD }}$	Audio Switch On Resistance	3.2 to 4.4	$\mathrm{R}^{\text {R }}=-0.8 \mathrm{~V}, 0.8 \mathrm{~V}, \mathrm{l}_{\mathrm{ON}}=30 \mathrm{~mA}$,			3	Ω
$\mathrm{R}_{\text {FLAT }}$	Audio R_{ON} Flatness ${ }^{(1)}$	3.8	Figure 7		0.16		Ω
$\mathrm{R}_{\text {TERM }}$	Internal Termination Resistors				1		k Ω
Total Switch Current Consumption							
$I_{\text {ccsL }}$	Battery Supply Sleep Mode Average Current	3.2 to 4.4	Static Current During Sleep Mode (SEL[2:0]=0)			1	$\mu \mathrm{A}$
Iccwk	Battery Supply Active Mode Average Current	3.2 to 4.4	USB/UART Mode		20	35	$\mu \mathrm{A}$
			Audio Mode			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ccselt }}$	Increase in $\mathrm{I}_{\mathrm{ccsL}} / \mathrm{I}_{\mathrm{Ccwk}}$ Current per Control Voltage and $V_{C C}$	3.2 to 4.4	$\mathrm{V}_{\text {SEL }}=2.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=4.4 \mathrm{~V}$			8	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {SEL }}=1.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=4.4 \mathrm{~V}$			10	$\mu \mathrm{A}$

Note:

3. Flatness is defined as the difference between the maximum and minimum values of on resistance over the specified range of conditions.

Switch Path AC Electrical Characteristics ${ }^{(4)}$

All typical value are for $\mathrm{V}_{\mathrm{CC}}=3.8 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	TA $=-40$ to $+85^{\circ} \mathrm{C}$			Unit	Figure	
			Min.		Typ.	Max.				
Xtalk	Active Channel Crosstalk DP_CON to DM_CON	Audio Mode		3.8	$\begin{aligned} & \mathrm{f}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{T}}=32 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$		-95		dB	Figure 10
		USB Mode	3.8	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$		-75				
				$\begin{aligned} & \mathrm{f}=240 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$		-36				
$\mathrm{O}_{\text {IRR }}$	Off Isolation Rejection Ratio	Audio Rejection L_HOST to DM_CON, R_HOST to DP_CON	3.8	$\begin{aligned} & \mathrm{f}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{T}}=32 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$		-100		dB	Figure 9	
		USB Rejection DM_HOST to DM_CON, DP_HOST to DP_CON	3.8	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$		-85				
				$\begin{aligned} & \mathrm{f}=240 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$		-35				
THD+N	Total Harmonic Distortion + Noise (Audio Path)		3.8	20 Hz to 20 kHz , $\mathrm{R}_{\mathrm{L}}=16 \Omega$, Input Signal Range $1.6 \mathrm{~V}_{\mathrm{PP}}$		0.10		\%	Figure 14	
			20 Hz to 20 kHz , $\mathrm{R}_{\mathrm{L}}=32 \Omega$, Input Signal Range $1.6 \mathrm{~V}_{\mathrm{PP}}$		0.07		\%	Figure 14		

Note:

4. Guaranteed by characterization; not production tested.

Capacitance

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit	Figure
				Min.	Typ.	Max.		
$\mathrm{C}_{\text {IN }}$	Select Pins Capacitance ${ }^{(5)}$	0	$\mathrm{V}_{\text {BIAS }}=0.2 \mathrm{~V}$		2.5		pF	Figure 12
$\mathrm{C}_{\text {OFF (D+, D-) }}$	D+, D- On Capacitance (HS USB Mode) ${ }^{(5)}$	3.8	$\mathrm{V}_{\text {BIAS }}=0.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		4.0		pF	Figure 12
$\mathrm{Con}_{\text {(D+, D-) }}$	D+, D- On Capacitance (HS USB Mode) ${ }^{(5)}$	3.8	$\mathrm{V}_{\mathrm{BIAS}}=0.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		6.8		pF	Figure 13

Note:

5. Guaranteed by characterization; not production tested.

High-Speed USB Eye Compliance Results

Figure 4. High-Speed Test Results (DP_CON/DM_CON - DP_HOST1/DM_HOST1)

Figure 5. High-Speed Test Results (DP_CON/DM_CON - DP_HOST2/DM_HOST2)

Test Diagrams

Figure 7. On Resistance

Off-Isolation $=20 \log \left(\mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}\right)$

Figure 9. Channel Off Isolation

Figure 11. Charge Injection Test

Test Diagrams (Continued)

Figure 12. Channel Off Capacitance

Figure 13. Channel On Capacitance
 environment (see AC Tables for specific values).

Figure 14. Total Harmonic Distortion + Noise

Physical Dimensions

Figure 15. 12-Lead, Ultrathin Molded Leadless Package (UMLP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packagingl.

FAIROHILD				
SEMILONDUETDR				
TRADEMARKS				
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.				
$2 \mathrm{CoOl}^{\top \mathrm{M}}$	F-PFS ${ }^{\text {TM }}$		PowerTrench ${ }^{\text {® }}$ PowerXS	The Power Franchise ${ }^{5}$ the
AccuPower ${ }^{\text {AX }}$ CAPTM*	Global Power R	source ${ }^{\text {Sm }}$	Programmable Active Droop ${ }^{\text {Tu }}$	p Wer
BitSic ${ }^{\text {™ }}$	GreenBridge ${ }^{\text {tu }}$		QFET ${ }^{\text {® }}$	TinyBoost ${ }^{\text {Tu }}$
Build it Now ${ }^{\text {TM }}$	Green FPS ${ }^{\text {m }}$		QS ${ }^{\text {™ }}$	TinyBuck ${ }^{\text {™ }}$
CorePLUS ${ }^{\text {w }}$	Green FPS ${ }^{\text {™ }} \mathrm{e}$ -	eries ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {Tu }}$
CorePOWER ${ }^{\text {tu }}$	Gmax ${ }^{\text {Tu }}$		RapidConfigure ${ }^{\text {TM }}$	$\text { TinyLogic }{ }^{\oplus}$
CROSSVOLT ${ }^{\text {M }}$	$\mathrm{GTO}^{\text {™ }}$		$\bigcirc^{\text {TMI }}$	TINYOPTO ${ }^{\text {TM }}$
CTL ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {TM }}$			TinyPower ${ }^{\text {™ }}$
Current Transfer Logic ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$		SignaMise ${ }^{\text {Tu }}$	TinyPWM ${ }^{\text {/ }}$
DEUXPEED ${ }^{\text {® }}$	Making Small	eakers Sound Louder	SmartMax ${ }^{\text {Tu }}$	TinyWire ${ }^{\text {u }}$
Dual Cool ${ }^{\text {ETM }}$	MegaBuck ${ }^{\text {™ }}$		SMART START ${ }^{\text {Tu }}$	Transic ${ }^{\text {ru }}$
EfficientMax ${ }^{\text {™ }}$	MICROCOUPL		Solutions for Your Success ${ }^{\text {™ }}$	TriFault Detect ${ }^{\text {TM }}$
ESBC ${ }^{\text {T }}$	Microfet ${ }^{\text {m }}$			TRUECURRENT ${ }^{\text {* }}$
	MicroPak ${ }^{\text {™ }}$		SuperFET ${ }^{\text {a }}$	μ SerDes ${ }^{\text {ur }}$
Fairchild ${ }^{\text {a }}$	MicroPak2 ${ }^{\text {TM }}$		SuperSOTM-3	${ }_{\text {Se }}$
Fairchild Semiconductor ${ }^{(0)}$	MillerDrive ${ }^{\text {TM }}$		SuperSOT ${ }^{\text {Hu-6 }}$	UHC ${ }^{\text {E }}$
FACT Quiet Series ${ }^{\text {™ }}$	MotionMax ${ }^{\text {ma }}$		SuperSOT ${ }^{\text {m-8 }}$	Ultra FRFET ${ }^{\text {™ }}$
FACT $^{\text {² }}$ -	mWSaver ${ }^{\text {™ }}$		SupreMOS ${ }^{\text {® }}$	UniFET ${ }^{\text {ru }}$
FAST ${ }^{\text {® }}$	Optohitm		SyncFET ${ }^{\text {m }}$	VCX ${ }^{\text {™ }}$
FastvCore ${ }^{\text {tu }}$	OPTOLOGIC ${ }^{\circ}$		Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {™ }}$
FETBench ${ }^{\text {™ }}$	OPIOPLANA		5 SYSTEM ${ }_{\text {G }}$	VoltagePlus ${ }^{\text {Tu }}$
FlashWriter ${ }^{\text {® }}$				X ${ }^{\text {TM }}$
FPS ${ }^{\text {T }}$				
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.				
DISCLAIMER				
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOESNOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THEWARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.				
LIFE SUPPORT POLICY				
FARCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.				
As used herein:				
1. Life support devices or systems are devices or systems which, (a) are 2. A critical component in any component intended for surgical implant into the body or (b) support or sustain system whose failure to perform can life, and (c) whose failure to perform when properly used in cause the failure of the life support devi accordance with instructions for use provided in the labeling, can be safety or effectiveness. reasonably expected to result in a significant injury of the user.				
ANTI-COUNTERFEITING POLICY				
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, www.fairchildsemi.com, under Sales Support.				
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authoxized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.				
PRODUCT STATUS DEFINITIONS				
Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NLAS7222AMTR2G NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI3USB31532ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FSUSB42MUX PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4717ETB+T MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4899EETE + MAX4906EFELB+T MAX4907FELA+T MAX4907ELA+T MAX4983EEVB+T MAX4984EEVB+T MAX4899AEETE+T MAX14618ETA+T MAX14651ETA+T

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

