ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{\text {® }}$

FSA839 - Low-Voltage, 0.8』 SPDT Analog Switch with Power-Off Isolation

Features

- Pow er-Off Isolation ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
- 0.8Ω Maximum On Resistance $\left(R_{\text {ON }}\right)$ for $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- 0.25Ω Maximum R_{ON} Flatness for $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Fast Turn-On and Turn-Off Times
- Control Input Sw itching Thresholds Independent of $V_{c c}$
- Break-Before-Make Enable Circuitry
- $\quad 0.4$ mm WLCSP Packaging
- ESD Performance
- HBM per JESD22-A114, VO to GND: 8 kV
- CDM per JESD22-C101: 500 V
- IEC61000-4-2 Contact / Air: 8 kV / 15 kV

Applications

- Cellular Phone
- Portable Media Player
- PDA

Description

The FSA839 is a high-performance Single-Pole / DoubleThrow (SPDT) analog sw itch for audio applications driven by low -voltage (1.8 V) baseband processors or ASICs. The device features ultra-low R_{ON} of 0.8Ω (maximum) at $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and operates over the wide V_{CC} range of 1.65 V to 5.5 V . The device is fabricated w ith sub-micron CMOS technology to achieve fast sw itching speeds and is designed for break-before-make operation.
The FSA839 interfaces betw een the low -voltage ASIC and regular audio amplifiers and CODECs operating up to a 5.5 V supply range. The control circuitry allows for 1.8 V (typical) signals on the control pin (Sel).

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FSA839UCX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N3	6 -Ball WLCSP, 0.4 mm Pitch	Tape and Reel

Figure 1. Analog Symbol

Marking Information

$$
\begin{aligned}
& \text { KK }=\text { Lot Run Code } \\
& \mathrm{X}=\text { Year } \\
& \mathrm{Y}=\text { Work Week } \\
& \mathrm{Z}=\text { Assembly Site }
\end{aligned}
$$

Figure 2. Top Mark with Pin 1 Orientation

Ball Configuration

Figure 3. Pin Assignments (Bottom View)
Ball Definitions

Ball	Name	Description
A1	B1	Data Port (Normally Open)
B1	GND	Ground
C1	B0	Data Ports (Normally Closed)
C2	V $_{\text {CC }}$	Supply Voltage
B2	A	Common Data Port
A2	Sel	Control Input

Truth Table

Control Input (Sel)	Function
LOW	B0 connected to A
HIGH	B1 connected to A

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {cc }}$	Supply Voltage		-0.5	6.5	V
$\mathrm{V}_{\text {sw }}$	Sw itch Voltage ${ }^{(1)}$		-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IN }}$	Input Voltage ${ }^{(1)}$		-0.5	6.5	V
I_{1}	Input Diode Current			-50	mA
$l_{\text {sw }}$	Sw itch Current (Continuous)			200	mA
1 IWPEAK	Peak Sw itch Current (Pulsed at 1 ms Duration, <10\% Duty Cycle)			400	mA
P_{D}	Pow er Dissipation at $85^{\circ} \mathrm{C}$			180	mW
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 Seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (JEDEC: JESD22-A114)	VO to GND: A		8	kV
		All Pins		2	
	Charged Device Model (JEDEC: JESD22-C101)			500	V
	Machine Model (JEDEC: JESD22-A115)			100	V
	IEC6100-4-2 Discharge System Test Performed on ON Semiconductor's FSA859 Applications Testing Board	Contact		8	kV
		Air		15	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	1.65	5.50	V
SEL	Control Input Voltage	0	1.95	V
$\mathrm{~V}_{\mathrm{SW}}$	Sw itch Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance, Still Air		350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics
All typical values are at $25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbo I	Parameter	V_{cc} (V)	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		Unit
				Min.	Typ.	Max.	Min.	Max.	
V_{IH}	Input Voltage High	$\begin{gathered} 1.65 \text { to } \\ 5.50 \end{gathered}$					1.0		V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low	$\begin{gathered} 1.65 \text { to } \\ 5.50 \end{gathered}$						0.57	V
I_{N}	Control Input Leakage	$\begin{gathered} 1.95 \text { to } \\ 5.50 \end{gathered}$	$\mathrm{V}_{\text {Sel }}=0$	-2		2	-20	20	nA
$I_{\text {NOOFFF, }}$ $\mathrm{I}_{\mathrm{NC}(\text { (OFF), }}$	Off-Leakage Current of Port B0 and B1 ${ }^{(5)}$	5.50	$\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=4.5,1 \mathrm{~V} \end{aligned}$	-10		10	-50	50	nA
		3.60	$\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 3.0 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=3.0,1 \mathrm{~V} \end{aligned}$	-10		10	-50	50	
		2.70	$\begin{aligned} & \mathrm{A}=0.5 \mathrm{~V}, 2.3 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.3,0.5 \mathrm{~V} \end{aligned}$	-10		10	-50	50	
		1.95	$\begin{aligned} & \mathrm{A}=0.3 \mathrm{~V}, 1.65 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.65,0.3 \mathrm{~V} \end{aligned}$	-5		5	-20	20	
$I_{\text {No(On), }}$ INC(On)	On-Leakage Current of Port B0 and B1 ${ }^{(5)}$	5.50	$\mathrm{A}=$ Floating B0 or B1=4.5, 1V	-20		20	-100	100	nA
		3.60	A=Floating B 0 or $\mathrm{B} 1=3.0,1 \mathrm{~V}$	-10		10	-20	20	
		2.70	A=Floating B 0 or $\mathrm{B} 1=2.3,0.5 \mathrm{~V}$	-10		10	-20	20	
		1.95	$\begin{aligned} & A=\text { Floating } \\ & B 0 \text { or } B 1=1.65,0.3 \mathrm{~V} \end{aligned}$	-5		5	-20	20	
$\mathrm{I}_{\text {(OON) }}$	On Leakage Current of Port $A^{(5)}$	5.50	$\mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V}$; B0 or $\mathrm{B} 1=1 \mathrm{~V}, 4.5 \mathrm{~V}$, or Floating	-20		20	-100	100	$n A$
		3.60	$\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 3.0 \mathrm{VB} 0 \text { or } \mathrm{B} 1=1 \mathrm{~V}, \\ & 3.0 \mathrm{~V} \text {, or Floating } \end{aligned}$	-10		10	-20	20	
		2.70	$\begin{aligned} & \mathrm{A}=0.5 \mathrm{~V}, 2.3 \mathrm{~V}, \mathrm{BO} \text { or } \\ & \mathrm{B} 1=0.5 \mathrm{~V}, 2.3 \mathrm{~V} \text {, or } \\ & \text { Floating } \end{aligned}$	-10		10	-20	20	
		1.95	$\begin{aligned} & \mathrm{A}=0.3 \mathrm{~V}, 1.65 \mathrm{~V} \text {; } \mathrm{B} 0 \text { or } \\ & \mathrm{B} 1=0.3 \mathrm{~V}, 1.65 \mathrm{~V} \text {, or } \\ & \text { Floating } \end{aligned}$	-5		5	-20	20	
loff	Pow er Off Leakage Current of Port A \& Port ${ }^{(5)}$	0	$\begin{aligned} & \mathrm{A}=0 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	-1.00	0.01	1.00	-5.00	5.00	$\mu \mathrm{A}$
$\mathrm{R}_{\text {PD }}$	Sel Internal PullDow n Resistor	$\begin{gathered} 1.65 \text { to } \\ 1.95 \end{gathered}$			2.0				M 2
1 lc	Quiescent Supply Current	5.50	$\begin{aligned} & \mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{SEL}}=0 \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{l}_{\text {OUT }}=0 \end{aligned}$			100		500	nA

DC Electrical Characteristics (Continued)

All typical values are at $25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbo I	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{I}_{\text {CCT }}$	Increase in I_{CC} per Control Input	5.50	$\mathrm{V}_{\text {Sel }}=1.8 \mathrm{~V}$		26	40		50	$\mu \mathrm{A}$
		3.60	$\mathrm{V}_{\text {Sel }}=1.8 \mathrm{~V}$		5	15		20	
		2.70	$\mathrm{V}_{\text {Sel }}=1.8 \mathrm{~V}$		1	5		10	
		1.95	$\mathrm{V}_{\text {Sel }}=1.8 \mathrm{~V}$		0.01	1.00		3.00	
$I_{\text {ccz }}$	Supply Current Sleep	5.50	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {Sel }}=$ Floating			0.5		1.0	$\mu \mathrm{A}$
R_{ON}	Switch On Resistance ${ }^{(2,5)}$	4.50	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.5 \mathrm{~V} \end{aligned}$		0.50	0.75		0.80	Ω
		3.00	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.0 \mathrm{~V} \end{aligned}$		0.75	0.90		1.20	
		2.25	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.8 \mathrm{~V} \end{aligned}$		1.0	1.3		1.6	
		1.65	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.2 \mathrm{~V} \end{aligned}$		2.5	5.0		7.0	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Matching Betw een Channels ${ }^{(3,5)}$	4.50	$\begin{aligned} & \mathrm{l}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.5 \mathrm{~V} \end{aligned}$		0.05	0.10		0.10	Ω
		3.00	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.0 \mathrm{~V} \end{aligned}$		0.10	0.15		0.15	
		2.25	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.8 \mathrm{~V} \end{aligned}$		0.15	0.20		0.20	
		1.65	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.2 \mathrm{~V} \end{aligned}$		0.15	0.40		0.40	
$\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$	On Resistance Flatness ${ }^{(4,5)}$	4.50	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \mathrm{B0} \text { or } \\ & \mathrm{B} 1=1.0 \mathrm{~V}, 1.5 \mathrm{~V}, \\ & 2.5 \mathrm{~V} \end{aligned}$		0.075	0.250		0.250	Ω
		3.00	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=0.8 \mathrm{~V}, \\ & 2.0 \mathrm{~V} \end{aligned}$		0.1	0.3		0.3	
		2.25	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=0.8 \mathrm{~V}, \\ & 1.8 \mathrm{~V} \end{aligned}$		0.25	0.50		0.60	
		1.65	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \text { B0 or } \mathrm{B} 1=0.6 \mathrm{~V}, \\ & 1.2 \mathrm{~V} \end{aligned}$		3.5				

Notes:

2. On resistance is determined by the voltage drop betw een A and B pins at the indicated current through the sw itch.
3. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ maximum - R_{ON} minimum; measured at identical V_{CC}, temperature, and voltage.
4. Flatness is defined as the difference betw een the maximum and minimum value of on resistance over the specified range of conditions.
5. Guaranteed by characterization, not production tested for $\mathrm{V}_{\mathrm{CC}}=1.65-1.95 \mathrm{~V}$.

AC Electrical Characteristics
All typical value are at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$, and 5.0 V at $25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbo I	Paramete r	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit	Figur e
				Min	Typ.	Max.	Min.	Max.		
t_{ON}	$\begin{aligned} & \text { Turn-On } \\ & \text { Time }^{(6)} \end{aligned}$	4.50 to 5.50	$\begin{aligned} & \mathrm{B} 0 \text { or } \mathrm{B} 1=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	1.0	12.0	25.0	1.0	30.0	ns	Figure 4
		3.00 to 3.60		5.0	15.0	30.0	3.0	35.0		
		2.30 to 2.70		5.0	20.0	35.0	5.0	40.0		
		1.65 to 1.95		10.0	50.0	70.0	10.0	75.0		
$\mathrm{t}_{\text {ofF }}$	$\begin{aligned} & \text { Turn-Off } \\ & \text { Time }{ }^{(6)} \end{aligned}$	4.50 to 5.50	$\begin{aligned} & \mathrm{B} 0 \text { or } \mathrm{B} 1=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	1.0	9.5	20.0	1.0	25.0	ns	Figure 4
		3.00 to 3.60		1.0	9.0	20.0	1.0	25.0		
		2.30 to 2.70		2.0	10.0	20.0	2.0	25.0		
		1.65 to 1.95		2.0	28.0	40.0	2.0	50.0		
$\mathrm{t}_{\text {BbM }}$	Break- Before-Make Time ${ }^{(7)}$	4.50 to 5.50	$\begin{aligned} & \mathrm{B} 0 \text { or } \mathrm{B} 1=\mathrm{V}_{\mathrm{CC}} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	1.0	10.0	12.0	0.1	14.0	ns	Figure 5
		3.00 to 3.60		1.0	14.0	16.0	1.0	17.0		
		2.30 to 2.70		1.0	21.0	25.0	1.0	27.0		
		1.65 to 1.95			35.0		2.0	50.0		
Q	Charge Injection	5.50	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$		70				pC	Figure 7
		3.30			40					
		2.50			30					
		1.65			10					
OIRR	Off Isolation	1.8 to 5.0	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \hline \end{aligned}$		-55				dB	Figure 6
Xtalk	Crosstalk	1.8 to 5.0	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		55				dB	Figure 6
BW	$\begin{aligned} & -3 \mathrm{db} \\ & \text { Bandw idth } \end{aligned}$	5.50	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		60				MHz	Figure 9
		3.30			60					
		2.50			55					
		1.65			50					
THD	Total Harmonic Distortion	1.80	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$. 02				\%	Figure 10
		5.00			. 001					
PSRR	Pow er Supply Rejection Ratio	3.3	$\mathrm{f}=217 \mathrm{~Hz} \text { on } \mathrm{V}_{\mathrm{cc}}$ at 500 mvpp		-23				dB	Figure 11

Notes:
6. Guaranteed by characterization, not production tested for $\mathrm{V}_{\mathrm{CC}}=1.65-1.95 \mathrm{~V}$.
7. Guaranteed by characterization, not production tested.

Capacitance							
Symbo I	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}+25^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	0	$\mathrm{f}=1 \mathrm{MHz}$		3.2		pF
$\mathrm{C}_{\text {OFF }}$	B Port Off Capacitance	1.65 to 5.50	$\mathrm{f}=1 \mathrm{MHz}$		50		pF
$\mathrm{Con}^{\text {N }}$	A Port On Capacitance	1.65 to 5.50	$\mathrm{f}=1 \mathrm{MHz}$		150		pF

Test Diagrams
C_{L} includes fixture and stray capacitance.

Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 4. Turn On / Off Timing

Figure 5. Break-Before-Make Timing

Figure 6. Off Isolation and Crosstalk

Test Diagrams (Continued)

Figure 7. Charge Injection

Figure 8. On / Off Capacitance Measurement Setup

Figure 9. Bandwidth

Figure 10. Harmonic Distortion

Figure 11. PSRR

Product Specific Dimensions

Product	\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
FSA839UCX	$1.160 \pm .030$	$0.760 \pm .030$	0.180	0.180

Physical Dimensions

TOP VIEW

SIDE VIEWS

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

NOTES:
A. No JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASMEY14.5M, 1994.
D. Datum c, the seating plane is defined BY THE SPHERICAL CROWNS OF THE BALLS
e. PACKAGE TYPICAL HEIGHT IS 586 MICRONS ± 39 MICRONS ($547-625$ MICRONS).
f. For dimensions d, e, X , AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILENAME: UC006ACrev4.

Figure 12. 6-Ball, WLCSP 0.4 mm Pitch

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at ww.onsemi.com/site/pd/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or simi lar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

 LITERATURE FULFILLMENT:| Literature Distribution Center for ON Semiconductor | N. Amer ic an Technic al Support: 800-282-9855 Toll | ON Semic onductor Website: www.onsemi.com |
| :--- | :--- | :--- |
| 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA | Free | |
| Phone: $303-675-2175$ or 800-344-3860 Toll Free | USA/Canada. | Or der Liter ature: http://www.onsemi.com/orderlit |
| USA/Canada | Europe, Middle East and Africa Technic al Support: | |
| Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada | Phone: 421337902910 | For additional information, please contact your local |
| Email: orderlit@onsemi.com | Japan Customer Focus Center | Sales Representative |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

