

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

October 2007

FSAL200 — Wide Bandwidth Quad 2:1 Analog Multiplexer / De-multiplexer Switch

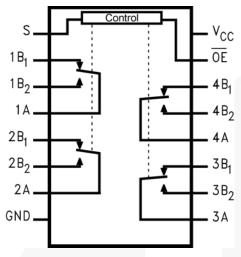
Features

- Typical 6Ω Switch Connection Between Two Ports
- Minimal Propagation Delay Through the Switch
- Low I_{CC}
- Zero Bounce in Flow-Through Mode
- Control Inputs Compatible with TTL Level
- Rail-to-Rail Signal Handling
- Route Communications Signals Include:
 - 10/100 Ethernet
 - 100VG—AnyLAN
 - ATM25
 - SONET OCI 51.8Mbps
 - USB1.1
 - T1/E1
 - Token Ring 4/16Mbps

Description

The Fairchild Switch FSAL200 is a rail-to-rail quad 2:1 high-speed CMOS TTL-compatible analog multiplexer / de-multiplexer switch. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

When OE is low, the select pin connects the A Port to the selected B Port output. When OE is high, the switch is open and a high-impedance state exists between the two ports.


Ordering Information

Part Number	Package Description	
FSAL200MTC	16-Lead Thin Shrink Small Outline Package(TSSOP), JEDEC MO-153, 4.4mm Wide	Rails
FSAL200MTCX	16-Lead Thin Shrink Small Outline Package(TSSOP), JEDEC MO-153, 4.4mm Wide	Tape and Reel
FSAL200QSC	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide	Rails
FSAL200QSCX	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide	Tape and Reel

All packages are Pb-free per JEDEC standard J-SDD-020B.

Pin Configurations

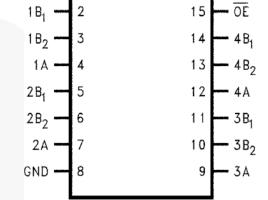


Figure 1. Analog Symbol

Figure 2. Connection Diagram

16

Control Input(s)	OE	Function
X	High	Disconnected
Low	Low	A=B1
High	Low	A=B2

Pin Descriptions

Pin Names	Function
ŌĒ	Switch Enable
S	Select Input
A, B1, B2	Data Ports

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Max.	Unit
V _{CC}	Supply Voltage	-0.5	7.0	V
V_{SW}	DC Switch Voltage ⁽¹⁾	-0.5	0.5	V
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5	7.0	V
I _{IK}	DC Input Diode Current at (I _{IK}) V _{IN} < 0V		-50	mA
I _{OUT}	DC Output Current		120	mA
I _{CC} /I _{GND}	DC V _{CC} or Ground Current		±100	mA
P _D	Power Dissipation at 85°C		0.5	W
T _{STG}	Storage Temperature Range	-65	+150	°C
T_A	Ambient Temperature with Power Applied	-40	+85	°C

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Pa	Min.	Max.	Unit	
V _{CC}	Supply Voltage	Supply Voltage		5.5	V
V _{IN}	Control Input Voltage ⁽²⁾	Control Input Voltage ⁽²⁾		V _{CC}	V
V _{SW}	Switch Input Voltage	Switch Input Voltage		Vcc	V
V_{OUT}	Output Voltage	Output Voltage		V _{CC}	V
T _A	Operating Temperature	Operating Temperature		+85	°C
4 4.	Innut Ding and Fall Time	Control Input V _{CC} =2.3V -3.6V	0	10	ns/V
t _r ,t _f	Input Rise and Fall Time Control Input V _{CC} =4.5V -		0	5	115/ V
θ_{JA}	Thermal Resistance in Still Sir				°C/W

Note:

2. Control input must be held HIGH or LOW and it must not float.

DC Electrical Characteristics

Typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Parameter Conditions		T _A =-40°C to +85°C			Units	
				Min.	Тур.	Max.		
V	Input Voltage High		4.5 to 5.5	2.0			V	
V_{IH}	VIH IIIput Voltage Flight	3.0	3.0 to 3.6	2.0			V	
VII	Input Voltage Low		4.5 to 5.5	-0.5		0.8	V	
VIL	Input Voltage Low		3.0 to 3.6	-0.5		0.8	V	
I_{OZ}	Off State Leakage Current	$0 \leq V_{IN} \! \leq \! 5.5V$	0 to 5.5			100	μA	
_	Switch On Resistance ⁽³⁾	I _{ON} =10 -30mA	4.5 to 5.5		6	12	0	
R _{ON}	Switch On Resistance	I _{ON} =10 -30mA	I _{ON} =10 -30mA	3.0 to 3.6		15	22	Ω
	I _{IN} Control Input Leakage	V _{IN} =V _{CC} or GND	5.5			±1		
IIN		V _{IN} =V _{CC} or GND	3.6			±1	μA	
Icc	Quiescent Supply Current, All Channels Off	V _{IN} =V _{CC} or GND, I _{OUT} =0	5.5			1	μΑ	
	Analog Signal Range		V _{CC}	0		Vcc	V	
4 D	On Resistance Matching	I _A =-30 mA, V _{BN} =3.15	4.5 to 5.5	1	0.4	2.0	0	
ΔΚΟΝ	ΔR _{ON} Between Channels ⁽³⁾⁽⁴⁾	I _A =-10 mA, V _{BN} =2.1	3.0 to 3.6		1.0	3.0	Ω	
1-	I _O Output Current	D. D. 0.377.577	B B S 0\/ to 5\/	4.5 to 5.5	100			m A
10		B_n , B_n , S-0V to 5V	3.0 to 3.6	80			mA	
D	On Resistance Flatness ⁽³⁾⁽⁵⁾	A ₁ , B ₁ , B ₂ =0V to 5V	4.5 to 5.5		3			
R _{FLAT(ON)}	On Nesistance Flathess	A ₁ , B ₁ , B ₂ =0V to 5V	3.0 to 3.6		7		Ω	

Notes:

- 3. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B ports).
- $\Delta R_{ON} = R_{ON}$ maximum $-R_{ON}$ minimum measured at identical V_{CC} , temperature, and voltage levels. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC Electrical Characteristics

Typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{CC} (V)	Min.	Тур.	Max.	Units	Figure
4	4 T On Time	VB _n =3V	4.5 to 5.5		10	20	no	Figure 3
t _{ON}	Turn-On Time	VB _n =1.5V	3.0 to 3.6		28	40	ns	Figure 4
	Turn-Off Time	VB _n -3V	4.5 to 5.5		5	10	ns	Figure 3
t _{OFF}	Turri-On Time	VB _n =1.5V	3.0 to 3.6		4	20	115	Figure 4
Q	Charge	C _L =0.1nF,V _{GEN} =0	5.0		7		20	Figure 5
Q	Injection	R _{GEN} =0Ω	3.3		3		pC	rigule 5
OIRR	OIDD OWL I I	R _L =100Ω ,f=30MHz	4.5 to 5.5		-55		dB	dD Figure 6
OIKK	Off Isolation	$R_L=50\Omega$, $f=1MHz$	3.0 to 3.6		-75			Figure 6
Xtalk	Crosstalk	R _L =100Ω ,f=30MHz	4.5 to 5.5		-70		dB	Figure 7
Alaik	Crossiaik	R _L =50Ω, f=1MHz	3.0 to 3.6		-75			Figure 7
DW	BW -3db Bandwidth	R _L =100Ω	4.5 to 5.5	5.5 137		N 41 1-	Figure 0	
BVV		Bandwidth $R_L=50\Omega$ 3.0 to 3.6	110		MHz	Figure 9		
0	$\Delta R_{ON/RL}$ $R_L=100\Omega$	$R_{L}=100\Omega$ 4.5 to 5.5 2 3.0 to 3.6 3		2		%	Figure 0	
U			%	Figure 9				

Notes:

- 6. Guaranteed by design.
- 7. Off Isolation =20 $log_{10} [V_A / V_{Bn}]$.

Capacitance

T_A=+25°C, f=1MHz. Capacitance is characterized, but not tested in production.

Symbol	Parameter	Conditions	Тур.	Units	Figure
C _{IN}	Control Pin Input Capacitance	V _{CC} =0V	2.3	pF	
C _{IO-B}		V _{CC} =5.0V and 3.0V	8	pF	Figure 10
		V _{CC} =5.0V and 3.0V	13		Figure 10
Con	Channel On Capacitance	V _{CC} =5.0V and 3.0V	15	pF	Figure 7

AC Loadings and Waveforms

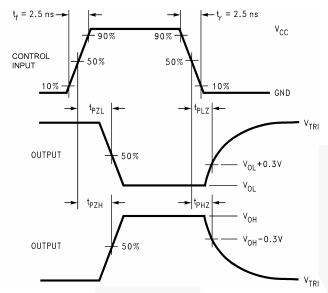


Figure 3. AC Waveforms

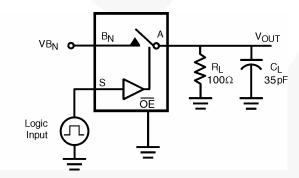
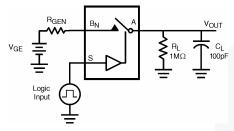



Figure 4. ton, toff Loading

AC Loadings and Waveforms (Continued)

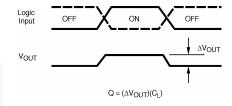


Figure 5. Charge Injection Test

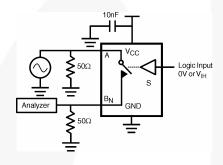


Figure 6. Off Isolation

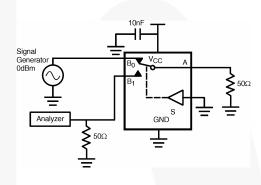
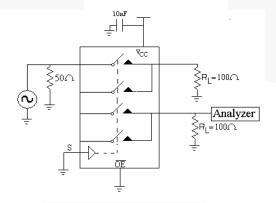



Figure 7. Channel On Capacitance

B₁
V_{CC}
A
Analyzer

V_{CC}

B₂
V_{CC}

GND

GND

GND

GND

Figure 8. Crosstalk

Figure 9. Bandwidth

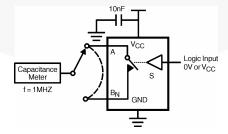


Figure 10. Channel Off Capacitance

Physical Dimensions

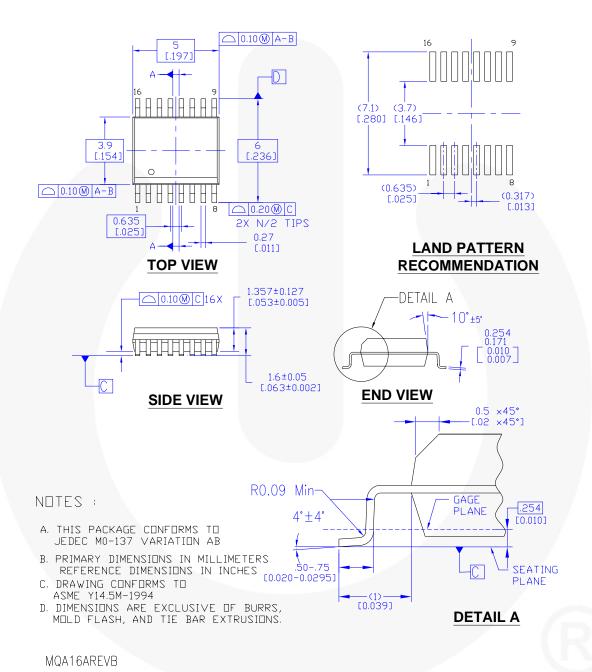


Figure 11. 16-lead, Quarter Size Outline Package (QSOP), JEDEC MO-137. 0.150" wide

Click here for tape and reel specifications, available at:

http://www.fairchildsemi.com/products/analog/pdf/qsop16_tr.pdf

Physical Dimensions (Continued) A 5.00±0.10 4.55 5.90 4.45 7.35 В 0.65 6.4 4.4±0.1 1.45 3.2 O.2 CBA ALL LEAD TIPS 5.00 PIN #1 IDENT. LAND PATTERN RECOMMENDATION (F) 0.11 -SEE DETAIL A ALL LEAD TIPS 1.1 MAX (0.90)□ 0.1 C 0.09-0.20 -C-0.10±0.05 0.65 0.19 - 0.30 TOP AND BOTTOM ⊕ 0.10M A BS CS GAGE PLANE NOTES: 0.25 0°-8° A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, B. DIMENSIONS ARE IN MILLIMETERS C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS -0.6±0.1 SEATING PLANE D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1994 E. DRAWING FILE NAME: MTC16REV4 **DETAIL** A

Figure 12. 16-lead, Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm wide

Click here for tape and reel specifications, available at:

http://www.fairchildsemi.com/products/analog/pdf/tssop16_tr.pdf

F. LAND PATTERN RECOMMENDATION PER IPC7351 - ID#

TSOP65P640X110-16N

MTC16rev4

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACFx® Power247® Green FPS™ SuperSOT™-8 Build it Now™ Green FPS™ e-Series™ POWEREDGE® SyncFET™ Power-SPM™ The Power Franchise® CorePLUS™ GTO™ PowerTrench® $CROSSVOLT^{\text{TM}}$ p wer i-Lo™ Programmable Active Droop™ CTL^{TM} IntelliMAX™ TinyBoost™ Current Transfer Logic™ QFET' ISOPLANAR™ EcoSPARK® QS™ TinyBuck™ MegaBuck™ TinyLogic[®] QT Optoelectronics™ MICROCOUPLER™ TINYOPTO™ Fairchild® Quiet Series™ MicroFET™ TinvPower™ Fairchild Semiconductor® RapidConfigure™ MicroPak™ TinyPWM™ SMART START™ FACT Quiet Series™ MillerDrive™ TinyWire™ FACT[®] Motion-SPM™ SPM[®] $\mathsf{FAST}^{\scriptscriptstyle{\textcircled{\tiny{\$}}}}$ μSerDes™ UHC® OPTOLOGIC® STEALTH™ FastvCore™ OPTOPLANAR® SuperFET™ SuperSOT™-3 UniFET™ FPS™ FRFET®

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SuperSOT™-6

LIFE SUPPORT POLICY

Global Power ResourceSM

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

PDP-SPM™

Power220®

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 VCX^{TM}

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I31

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC
PI2SSD3212NCE NLAS3257CMX2TCG PI5A3157BC6EX PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX
PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 TC4066BP-NF HEF4053BT.653 PI3L720ZHEX
ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4
ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP.125 74HC4052DB.112 74HC4052PW.112 74HC4053DB.112
74HC4067DB.112 74HC4351DB.112 74HCT4052D.112 74HCT4052DB.112 74HCT4053DB.112 74HCT4351D.112 74LV4051PW.112
FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1439BRUZ