

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSAV450－800MHz，4－Channel，2：1 Video Switch

Features

－－50dB Off Isolation at 30 MHz
－－80dB Non－Adjacent Channel Crosstalk at 30 MHz
－3dB Bandwidth： 800 MHz
－On Resistance： 4Ω（Typical）
－Low Power Consumption： $1 \mu \mathrm{~A}$（Maximum）
－Control Input TTL Compatible

Applications

－RGB Video Switch in LCD，Plasma and Projector Displays

Description

The FSAV450 is a high performance Quad Sinple－Pole Double－Throw（SPDT）（2－to－1 multiplexer／demultiplexer） video switch designed specifically for switching high definition YPbPr and computer RGB（up to UXGA） signals．The bandwidth of this device is 800 MHz （typical）which allows signals to pass with minimal edge and phase distortion．Image integrity is maintained with low crosstalk，high off－Isolation and low differential gain and phase．The low on resistance（ 4Ω typical）minimizes signal insertion loss．Low voltage operation（3V），low power consumption（ $1 \mu \mathrm{~A}$ maximum）and small scale packaging（including leadless DQFN）make this device ideal for a broad range of applications．

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FSAV450BQX	-40 to $+85^{\circ} \mathrm{C}$	16 －Terminal Depopulated Quad Very－Thin Flat Pack No Leads（DQFN），JEDEC MO－241， $2.5 \times 3.5 \mathrm{~mm}$	Tape and Reel

Figure 1．Typical Application Diagram

Pin Configurations

Figure 2. Analog Symbol

Figure 3. DQFN Pin Assignments

Pin Descriptions

Pin \#	Name	Description
15	$/ \mathrm{OE}$	Bus Switch Enabled
1	S	Select Input
$4,7,9,12$	A	Bus A
$2,3,5,6,10,11,13,14$	$\mathrm{~B}_{1}-\mathrm{B}_{2}$	Bus B
8	GND	Ground
16	$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage

Truth Table

S	IOE	Function
Don't Care	HIGH	Disconnected
LOW	LOW	A $=\mathrm{B}_{1}$
HIGH	LOW	A=B B_{2}

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	-0.5	+6.0	V
$\mathrm{~V}_{\mathrm{S}}$	DC Switch Voltage	-0.5	+6.0	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage ${ }^{(1)}$	-0.5	+6.0	V
I_{K}	DC Input Diode Current, $\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	-50		mA
$\mathrm{I}_{\mathrm{OUT}}$	DC Output Sink Current		128	mA
$\mathrm{I}_{\mathrm{CC}} \mathrm{I}_{\mathrm{GND}}$	DC $\mathrm{V}_{\mathrm{CC}} /$ GND Current		± 100	mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JESD22-A114		2000	V

Note:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {cc }}$	Power Supply		4.0	5.5	V
$\mathrm{V}_{\text {IN }}$	Input Voltage		0	$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage		0	V_{Cc}	V
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	Switch Control Input	0	5	ns/V
		Switch I/O	0	DC	
T_{A}	Operating Temperature, Free Air		-40	+85	${ }^{\circ} \mathrm{C}$

Note:

2. Unused control inputs must be held HIGH or LOW; they may not float.

DC Electrical Characteristics
Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range			0		2	V
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	4.5			-1.2	V
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage		4.5 to 5.5	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		4.5 to 5.5			0.8	V
1	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	5.5			± 1.0	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OFF }}$	Off-State Leakage Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$	5.5			± 1.0	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	Switch On Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{I}}=75 \Omega, \mathrm{I}_{\mathrm{ON}}=13 \mathrm{~mA}$	4.5		4	6	Ω
		$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{I}}=75 \Omega, \mathrm{I}_{\mathrm{ON}}=26 \mathrm{~mA}$	4.5		5	7	
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$	5.5			1	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{Cc}}$	Increase in I_{cc} per Input	One Input at 3.4 V Other Inputs at V_{CC} or GND	5.5			1.5	mA

Note:

3. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the A or B pins.

AC Electrical Characteristics

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Units	Figure
				Min.	Typ.	Max.		
t_{ON}	Turn On Time S to Bus B	$\mathrm{VB}=2 \mathrm{~V}$	4.5 to 5.5		4.0	6.0	ns	Figure 11, Figure 12
	Output Enable Time OE to A or B				3.5	5.5		
$\mathrm{t}_{\text {OFF }}$	Turn Off Time S to Bus B	$\mathrm{VB}=2 \mathrm{~V}$	4.5 to 5.5		1.5	3.5	ns	Figure 11, Figure 12
	Output Disable Time OE to A or B				1.5	3.5		
D_{G}	Differential Gain	$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$	4.5 to 5.5		0.2		\%	Figure 5
D_{P}	Differential Phase	$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$	4.5 to 5.5		0.1		。	Figure 6
$\mathrm{O}_{\text {IRR }}$	Non-Adjacent Off Isolation	$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=30 \mathrm{MHz}$	4.5 to 5.5		-50		dB	Figure 7, Figure 13
$\mathrm{X}_{\text {taLk }}$	Non-Adjacent Channel Crosstalk	$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=30 \mathrm{MHz}$	4.5 to 5.5		-80		dB	Figure 8, Figure 14
B_{w}	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	4.5 to 5.5		800		MHz	Figure 4, Figure 15
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$			650			Figure 15

Capacitance

Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typ.	Units
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	3.0	pF
C_{ON}	A/B On Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, / \mathrm{OE}=0 \mathrm{~V}$	8.5	pF
$\mathrm{C}_{\mathrm{OFF}}$	Port B Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=/ \mathrm{OE}=5 \mathrm{~V}$	3.0	pF

AC Characteristics

Figure 4. Gain vs. Frequency

Figure 6. Differential Gain vs. DC bias

Figure 5. Differential Gain vs. DC bias

Figure 7. Off Isolation

AC Characteristics

Figure 8. Off Crosstalk vs. Frequency

RoN Switch Characteristics

Figure 9. $R_{\text {ON }}$ Switch On Resistance, $I_{O N}=13 \mathrm{~mA}$

Figure 10. R_{ON} Switch On Resistance, $\mathrm{I}_{\mathrm{ON}}=26 \mathrm{~mA}$

AC Loadings and Waveforms

Notes:

4. Input drive by 50Ω source terminated in 50Ω.
5. C_{L} includes load and stray capacitance.
6. Input $P R R=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$.

Figure 11. AC Test Circuit

Figure 12. AC Waveforms

Figure 13. Off Isolation Test

Figure 14. Crosstalk

Figure 15. Bandwidth

Physical Dimensions

Figure 16. 16-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/ms/MS/MS-522.pdf.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
ADG506ATE/883B DG406BDN-T1-E3 HEF4051BP NLAS5223CMUTAG NLV14051BDG NLVHC4051ADTR2G 016400E ADV3014KSTZ PI3V512QE FSA644UCX MAX7356ETG 7705201EC MAX4634ETBT MAX4578CAP+ PI2SSD3212NCE MAX3997ETM + PI3L100QE PI3DBS12412AZLEX PI3V512QEX MAX4969CTO+ PI3DBS12212AZBEX PI3DBS16213ZLEX PI3DBS16415ZHEX MAX7367EUP+T MAX7369EUP+ MAX7357ETG+T NLV74HC4053ADR2G NLVAST4051DTR2G ADG5209BCPZ-RL7 PS509WEX PS509QEX PS508QEX PS508WEX ADG5209FBRUZ-RL7 ADG5208FBRUZ-RL7 MAX14984ETG+ MAX14984ETG+T HV2818/R4X HV2918/R4X CBTU02044HEJ PS508LEX PS509LEX TC7W53FK,LF 74LVC1G3157GM,132 74LVC2G53DC,125 TC7PCI3215MT,LF ADG1407BCPZ-REEL7 ADG1407BRUZ ADG1409SRU-EP ADG439FBRZ-REEL

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

