Motion SPM® 5 Series

Description

The FSB50825B / FSB50825BS is an advanced Motion SPM 5 module providing a fully-featured, high-performance inverter output for AC Induction, BLDC and PMSM motors such as refrigerators, fans and pumps. These modules integrate optimized gate drive of the built-in MOSFETs (FRFET technology) to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts and thermal monitoring. The built-in high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's internal MOSFETs. Separate open-source MOSFET terminals are available for each phase to support the widest variety of control algorithms.

Features

- UL Certified No. E209204 (UL1557)
- Optimized for Over 10 kHz Switching Frequency
- 250 V $R_{DS(ON)}$ = 0.55 $\Omega(Max)$ FRFET MOSFET 3-Phase Inverter with Gate Drivers and Protection
- Built-In Bootstrap Diodes Simplify PCB Layout
- Separate Open-Source Pins from Low-Side MOSFETs for Three-Phase Current-Sensing
- Active-HIGH Interface, Works with 3.3 / 5 V Logic, Schmitt-trigger Input
- Optimized for Low Electromagnetic Interference
- HVIC for Gate Driving and Under-Voltage Protection
- Isolation Rating: 1500 V_{rms} / min
- RoHS Compliant
- Moisture Sensitive Level (MSL) 3 for SMD PKG

Applications

• 3-Phase Inverter Driver for Small Power AC Motor Drives

ON Semiconductor®

www.onsemi.com

SPM5E-023 / 23LD, PDD STD CASE MODEJ

SPM5H-023 / 23LD, PDD STD, SPM23-BD CASE MODEM

MARKING DIAGRAM

O \$Y&Z&K&E&E&E&3 FSB50825X

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week) &K = Lot

FSB50825X = Specific Device Code

X = B or BS

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise noted)

Symbol	Parameter	Conditions	Rating	Unit
V _{PN} DC Link Input Voltage, Drain-Source Voltage of Each MOSFET			250	V
BV _{DSS} Drain-Source Voltage V		V _{IN} = 0V, I _D = 250 μA	250	V
I _{PN}	Zero-Bias Static Leakage Current	V_{PN} = 200V, V_{IN} = 0V, V_{DD} = V_{BS} = 0V, T_C = T_J = 25°C for all phase	40	μΑ
I _{D 25} (Note 2)	Each MOSFET Drain Current, Continuous	T _C = 25°C	3.6	Α
I _{D 80} (Note 2) Each MOSFET Drain Current, Continuous		T _C = 80°C	2.7	Α
I _{DP} (Note 2)	Each MOSFET Drain Current, Peak	T _C = 25°C, PW < 100 μs	9.0	Α
I _{DRMS} (Note 2)	Each FRFET Drain Current, Rms	T _C = 80°C, F _{PWM} < 20 kHz	1.9	A _{rms}
P _D (Note 2)	Maximum Power Dissipation	T _C = 25°C, For Each MOSFET	14.2	W

CONTROL PART (Each HVIC Unless Otherwise Specified)

Symbol Parameter		Parameter Conditions		Unit
V _{DD}	Control Supply Voltage	Applied Between V _{DD} and COM	20	V
V _{BS} High-side Bias Voltage		Applied Between V _B and V _S	20	V
V _{IN}	Input Signal Voltage	Applied Between IN and COM	-0.3 ~ V _{DD} +0.3	٧

BOOTSTRAP DIODE PART (Each Bootstrap Diode Unless Otherwise Specified)

Symbol	Parameter	Conditions	Rating	Unit
V _{RRMB}	Maximum Repetitive Reverse Voltage		250	V
I _{FB} (Note 2)	Forward Current	T _C = 25°C	0.5	Α
I _{FPB} (Note 2)	Forward Current (Peak)	T _C = 25°C, Under 1ms Pulse Width	1.5	А

THERMAL RESISTANCE

Symbol	Parameter	Conditions	Rating	Unit
		Inverter MOSFET part, (Per Module)	1.7	°C/W

TOTAL SYSTEM

Symbol	Parameter	Conditions	Rating	Unit
T_{J}	Operating Junction Temperature		−40 ~ 1 50	°C
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}		60 Hz, Sinusoidal, 1 minute, Connection Pins to Heatsink	1500	V _{rms}

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. For the Measurement Point of Case Temperature T_C, Please refer to Figure 5.
- Calculation Value or Design Factor.
- 3. Using continuously under heavy loads or excessive assembly conditions (e.g. the application of high temperature/ current/ voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/ current/ voltage, etc.) are within the absolute maximum ratings and the operating ranges.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Packing Type	Reel Size	Quantity
FSB50825B	FSB50825B	SPM5P-023	Rail	N/A	15
FSB50825BS	FSB50825BS	SPM5Q-023	Tape & Reel	330 mm	450

PIN DESCRIPTION

Pin No.	Pin Name	Pin Description
1	СОМ	IC Common Supply Ground
2	V _B (U)	Bias Voltage for U Phase High Side FRFET Driving
3	VDD(U)	Bias Voltage for U Phase IC and Low Side FRFET Driving
4	IN(UH)	Signal Input for U Phase High-side
5	IN(UL)	Signal Input for U Phase Low-side
6	N.C	N.C
7	V _B (V)	Bias Voltage for V Phase High Side FRFET Driving
8	V _{DD} (v)	Bias Voltage for V Phase IC and Low Side FRFET Driving
9	IN(VH)	Signal Input for V Phase High-side
10	IN(VL)	Signal Input for V Phase Low-side
11	VTS	Output for HVIC Temperature Sensing
12	V _B (W)	Bias Voltage for W Phase High Side FRFET Driving
13	VDD(W)	Bias Voltage for W Phase IC and Low Side FRFET Driving
14	IN(WH)	Signal Input for W Phase High-side
15	IN(WL)	Signal Input for W Phase Low-side
16	N.C	N.C
17	Р	Positive DC-Link Input
18	U, Vs(U)	Output for U Phase & Bias Voltage Ground for High Side FRFET Driving
19	Nu	Negative DC-Link Input for U Phase
20	N _V	Negative DC-Link Input for V Phase
21	V, Vs(v)	Output for V Phase & Bias Voltage Ground for High Side FRFET Driving
22	N _w	Negative DC-Link Input for W Phase
23	W, Vs(w)	Output for W Phase & Bias Voltage Ground for High Side FRFET Driving

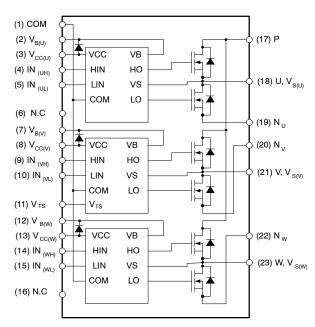


Figure 1. Pin Configuration and Internal Block Diagram (Bottom View)

NOTE: 4. Source Terminal of Each Low-Side MOSFET is Not Connected to Supply Ground or Bias Voltage Ground Inside Motion SPM 5 product. External Connections Should be Made as Indicated in Figure 4

ELECTRICAL CHARACTERISTICS (T_J = 25°C, V_{DD} = V_{BS} = 15 V Unless Otherwise Specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit		
NVERTER PA	.RT (Each MOSFET Unless Otherwise Spo	ecified)	-			l .	l		
BV _{DSS}	Drain-Source Breakdown Voltage	V _{IN} = 0 V, I _D = 1 mA	(Note 5)	250	_	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{IN} = 0 V, V _{DS} = 250	0 V		_	1	mA		
R _{DS(on)}	Static Drain-Source On-Resistance	V _{DD} = V _{BS} = 15 V, V	V _{IN} = 5 V, I _D = 2 A	_	0.37	0.55	Ω		
V_{SD}	Drain-Source Diode Forward Voltage	V _{DD} = V _{BS} = 15 V, V	V _{IN} = 0 V, I _D = -2 A	-	_	1.1	V		
t _{ON}		450.4.4	\\ 45\\\\ a	-	330	-	ns		
t _{OFF}		V _{PN} = 150 V, V _{DD} = A ON / OFF R _G = 8		-	530	-	ns		
t _{rr}	Switching Times	$V_{IN} = 0 V \leftrightarrow 5 V$, Inductive Load L= 3	3 mH	-	100	-	ns		
E _{ON}		High and Low-Side	MOSFET Switch-	-	40	-	μJ		
E _{OFF}				-	15	-	μJ		
RBSOA	Reverse-Bias Safe Operating Area	$V_{DS}=BV_{DSS}, T_{J}=15$	V_{PN} = 200 V, V_{DD} = V_{BS} = 15 V, I_{D} = I_{DP} , V_{DS} =BV _{DSS} , T_{J} = 150°C High- and Low-Side MOSFET Switching (Note 7)			Full Square			
ONTROL PA	RT (Each HVIC Unless Otherwise Specific	ed)							
I _{QDD}	Quiescent V _{DD} Current	V _{DD} = 15 V, V _{IN} = 0 V	Applied Between V _{DD} and COM	=	_	200	μА		
I _{QBS}	Quiescent V _{BS} Current	V _{BS} = 15 V, V _{IN} = 0 V	Applied Between VB(U)-U, VB(W)-W	-	-	100	μΑ		
I _{PDD}	Operating V _{DD} Supply Current	V _{DD} – COM	VDD = 15 V, fPWM = 20 kHz, duty = 50%, Applied to One PWM Signal Input for Low-Side			900	μΑ		
I _{PBS}	Operating V _{BS} Supply Current	VB(U) - VS(U), VB(V) - VS(V), VB(W) - VS(W)	VDD = VBS = 15 V, fPWM = 20 kHz, Duty = 50%, Ap- plied to One PWM Signal In- put for High-Side			800	μΑ		
UV_DDD	Low-Side Undervoltage Protection	V _{DD} Undervoltage I tion Level	Protection Detec-	7.4	8.0	9.4	٧		
UV _{DDR}	(Figure 8)	V _{DD} Undervoltage I Level	Protection Reset	8.0	8.9	9.8	٧		
UV _{BSD}	High-Side Undervoltage Protection	V _{BS} Undervoltage F Level	V _{BS} Undervoltage Protection Detection Level V _{BS} Undervoltage Protection Reset Level		8.0	9.4	V		
UV _{BSR}	(Figure 9)				8.9	9.8	V		
V _{TS}	HVIC Temperature sensing voltage output	V _{DD} =15 V, T _{HVIC} = 2	25°C (Note 8)	600	790	980	mV		
V _{IH}	ON Threshold Voltage	Logic High Level	Applied between	_	-	2.9	V		
V _{IL}	OFF Threshold Voltage	Logic Low Level	IN and COM	0.8	_	-	V		

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$, $V_{DD} = V_{BS} = 15 \text{ V}$ Unless Otherwise Specified)

Symbol Parameter		Test Conditions	Min.	Тур.	Max.	Unit
BOOTSTRAP DIODE PART (Each Bootstrap Diode Unless Otherwise Specified)						
V _{FB}	Forward Voltage	I _F = 0.1 A, T _C = 25°C (Note 9)	_	2.5	-	V
t _{rrB}	Reverse Recovery Time	I _F = 0.1 A, T _C = 25°C	-	80	ı	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

RECOMMENDED OPERATING CONDITION

			Value			
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied Between P and N	ı	150	200	V
V _{DD}	Control Supply Voltage	Applied Between V _{DD} and COM	13.5	15	16.5	V
V _{BS}	High-Side Bias Voltage	Applied Between V _B and V _S	13.5	15	16.5	V
V _{IN(ON)}	Input ON Threshold Voltage	Applied Between IN and COM	3.0	ı	V_{DD}	V
V _{IN(OFF)}	Input OFF Threshold Voltage		0	-	0.6	V
t _{dead}	Blanking Time for Preventing Arm-Short	$V_{DD} = V_{BS} = 13.5 \sim 16.5 \text{ V}, T_{J} \le 150^{\circ}\text{C}$	1.0	1	ı	μS
f _{PWM}	PWM Switching Frequency	T _J ≤ 150°C	-	15	-	kHz

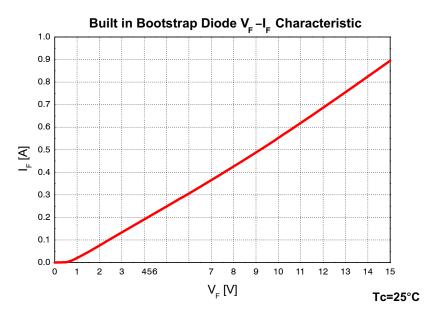


Figure 2. Built in Bootstrap Diode Characteristics (Typ.)

NOTE: 5. BV_{DSS} is the Absolute Maximum Voltage Rating Between Drain and Source Terminal of Each MOSFET Inside Motion SPM 5 product. V_{PN} Should be Sufficiently Less Than This Value Considering the Effect of the Stray Inductance so that V_{DS} Should Not Exceed BV_{DSS} in Any Case.

- 6. t_{ON} and t_{OFF} Include the Propagation Delay Time of the Internal Drive IC. Listed Values are Measured at the Laboratory Test Condition, and They Can be Different According to the Field Applications Due to the Effect of Different Printed Circuit Boards and Wirings. Please see Figure 7 for the Switching Time Definition with the Switching Test Circuit of Figure 7.
- 7. The peak current and voltage of each MOSFET during the switching operation should be included in the Safe Operating Area (SOA). Please see Figure 6 for the RBSOA test circuit that is same as the switching test circuit.
- 8. V_{TS} is only for sensing temperature of module and cannot shutdown MOSFETs automatically.
- 9. Built in bootstrap diode includes around 15 Ω resistance characteristic. Please refer to Figure 2.

These values depend on PWM control algorithm

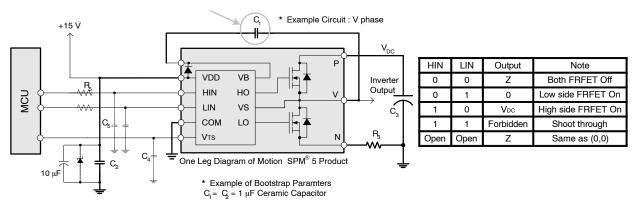


Figure 3. Recommended MCU Interface and Bootstrap Circuit with Parameters

NOTE: 10. Parameters for bootstrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching frequency, typical example of parameters is shown above.

11. RC-coupling (R_5 and C_5) and C_4 at each input of Motion SPM 5 product and MCU (Indicated as Dotted Lines) may be used to prevent improper signal due to surge-noise.

12. Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge-voltage. Bypass capacitors such as C_1 , C_2 and C_3 should have good high-frequency characteristics to absorb high-frequency ripple-current.

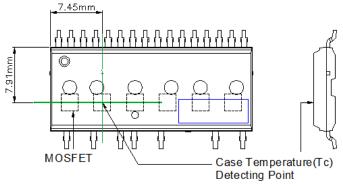


Figure 4. Case Temperature Measurement

NOTE: 13. Attach the thermocouple on top of the heat-sink of SPM 5 package (between SPM 5 package and heatsink if applied) to get the correct temperature measurement.

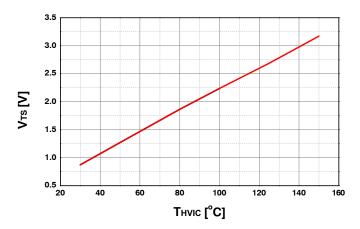


Figure 5. Temperature Profile of V_{TS} (Typical)

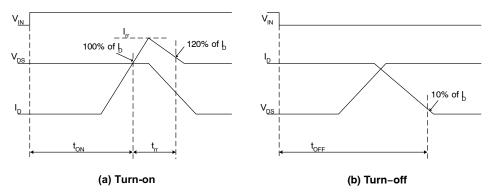


Figure 6. Switching Time Definitions

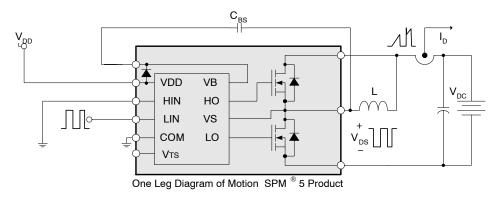


Figure 7. Switching and RBSOA (Single-Pulse) Test Circuit (Low-side)

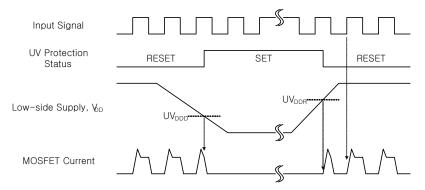


Figure 8. Under-Voltage Protection (Low-Side)

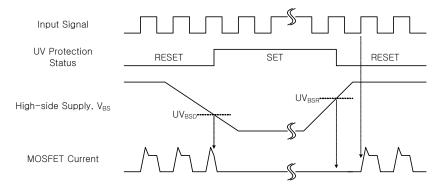


Figure 9. Under-Voltage Protection (High-Side)

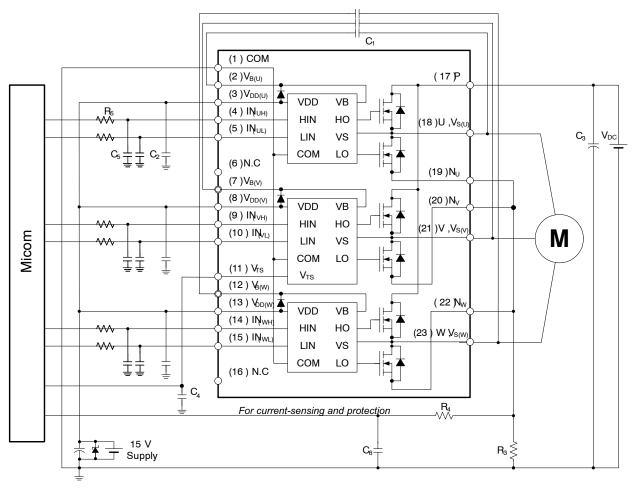
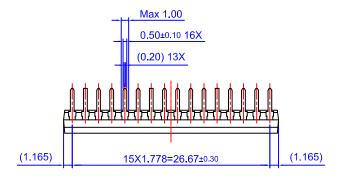
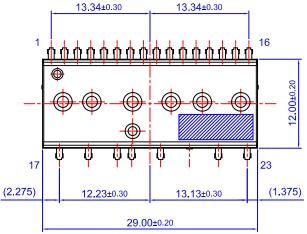
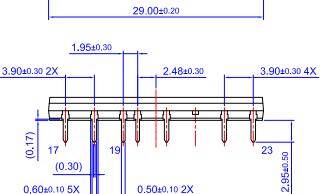


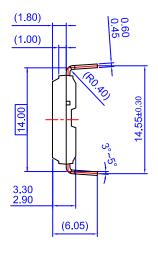
Figure 10. Example of Application Circuit


- NOTE: 14. About pin position, refer to Figure 1.
 - 15. RC-coupling (R₅ and C₅, R₄ and C₆) and C₄ at each input of Motion SPM 5 product and MCU are useful to prevent improper input signal caused by surge-noise.
 - 16. The voltage-drop across R₃ affects the low-side switching performance and the bootstrap characteristics since it is placed between COM and the source terminal of the low-side MOSFET. For this reason, the voltage-drop across R₃ should be less than 1 V in the steady-state.
 - 17. Ground-wires and output terminals, should be thick and short in order to avoid surge-voltage and malfunction of HVIC.
 - 18. All the filter capacitors should be connected close to Motion SPM 5 product, and they should have good characteristics for rejecting high-frequency ripple current.


SPM is a registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



SPM5E-023 / 23LD, PDD STD, FULL PACK, DIP TYPE CASE MODEJ ISSUE O


DATE 31 JAN 2017

PIN19,20

NOTES: UNLESS OTHERWISE SPECIFIED

A) THIS PACKAGE DOES NOT COMPLY

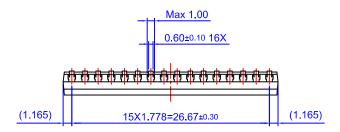
TO ANY CURRENT PACKAGING STANDARD

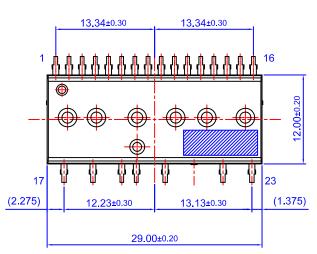
B) ALL DIMENSIONS ARE IN MILLIMETERS

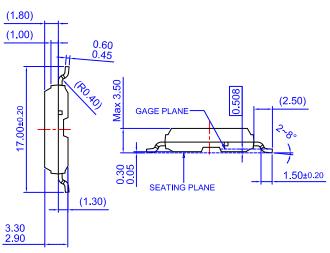
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,

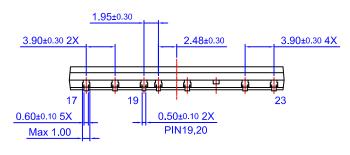
MOLD FLASH, AND TIE BAR EXTRUSIONS

D) () IS REFERENCE

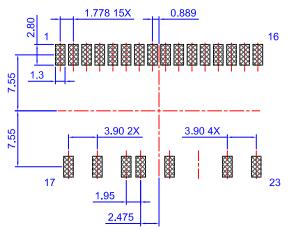

DOCUMENT NUMBER:	98AON13543G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SPM5E-023 / 23LD. PDD S	TD. FULL PACK. DIP TYPE	PAGE 1 OF 1	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


Max 1.00


SPM5H-023 / 23LD, PDD STD, SPM23-BD (Ver1.5) SMD TYPE CASE MODEM ISSUE O

DATE 31 JAN 2017



NOTES: UNLESS OTHERWISE SPECIFIED

A) THIS PACKAGE DOES NOT COMPLY

- TO ANY CURRENT PACKAGING STANDARD B) ALL DIMENSIONS ARE IN MILLIMETERS
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
- D) () IS REFERENCE

LAND PATTERN RECOMMENDATIONS

DOCUMENT NUMBER:	98AON13546G Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CONTROLLED			
DESCRIPTION:			PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801 LB11851FA-BH NCV70627DQ001R2G