

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
1－Bit／4－Bit SDISDIO and MMC Dual－Host Multiplexer

Features

－On Resistance： 5Ω Typical， $\mathrm{V}_{\mathrm{DDC}}=2.7 \mathrm{~V}$
－ $\mathrm{f}_{\text {toggle }}$ ：$>75 \mathrm{MHz}$
－Low On Capacitance：6pF Typical
－Low Power Consumption： $2 \mu \mathrm{~A}$ Maximum
－Supports Secure Digital（SD），Secure Digital I／O （SDIO），and Multimedia Card（MMC）Specifications
－Supports 1－Bit／4－Bit Host Controllers（VDDH／H2＝1．65V to 3.6 V ）Communicating with High－Voltage（2．7－3．6V）and Dual－Voltage Cards （1．65－1．95V，2．7－3．6V）
－$\quad V_{D D C}=1.65$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDH} 1 / \mathrm{H} 2}=1.65$ to 3.6 V
－24－Lead MLP and UMLP Packages

Applications

－Cell Phone，PDA，Digital Camera，Portable GPS，and Notebook Computer
－LCD Monitor，TV，and Set－Top Box

Related Resources

－FSSD07 Evaluation Board
－Evaluation Board Users Guide
－For samples，questions，or board requests；please contact analogswitch＠fairchildsemi．com

Description

The FSSD07 is a $2: 1$ multiplexer that allows dual Secure Digital（SD），Secure Digital I／O（SDIO），and Multimedia Card（MMC）host controllers to share a common peripheral．The host controllers can be equal to，greater than，or less than peripheral card supply with minimal power consumption．This configuration enables dual host CMD，CLK，and D［3：0］signals to be multiplexed to a common peripheral．
The architecture includes the necessary bi－directional data and command transfer capability for single high－ voltage cards or dual－voltage supply cards．The clock path is a uni－directional buffer．

Typical applications involve switching in portables and consumer applications：cell phones，digital cameras， home theater monitors，set－top boxes，and notebooks．

Figure 1．Analog Symbol Diagram

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package Description	Packing Method
FSSD07BQX	FSSD07	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$24-L e a d ~ M o l d e d ~ L e a d l e s s ~ P a c k a g e ~(M L P), ~ J E D E C ~$ MO－220， $3.5 \times 4.5 \mathrm{~mm}$	Tape \＆ Reel
FSSD07UMX	JK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$24-L e a d ~ U l t r a-t h i n ~ M o l d e d ~ L e a d l e s s ~ P a c k a g e ~$ （UMLP）， 0.4 mm pitch	Tape \＆ Reel

Pin Configuration

Figure 2. MLP Pin Assignments

Figure 3. UMLP Pin Assignments

Pin Definitions

Pin\# MLP	Pin\# UMLP	Name	Description
1	22	1DAT[2]	SDIO Common Port
2	23	OE	Output Enable (Active HIGH)
3	24	DAT[2]	
4	1	DAT[3]	SDIO Common Port
5	2	CMD	
6	3	VDDC	Power Supply (SDIO Peripheral Card Port)
7	4	GND	Ground
8	5	CLK	Clock Path Port
9	6	DAT[0]	SDIO Common Port
10	7	DAT[1]	SDIO Common Port
11	8	S	Select Pin
12	9	2DAT[1]	
13	10	2DAT[0]	Host Common Port
14	11	2CLK	Clock Path Port
15	12	VDDH2	Power Supply (Host Port)
16	13	2CMD	
17	14	2DAT[3]	
18	15	2DAT[2]	Host Common Port
19	16	1DAT[1]	
20	17	1DAT[0]	
21	18	1CLK	Clock Path Port
22	19	VDDH1	Power Supply (SDIO Host Port)
23	20	1CMD	Host Common Port
24	21	1DAT[3]	Host Common Port

Truth Table

OE	S	Function
HIGH	LOW	1CMD, 1CLK, 1DAT[3:0] connected to CMD, CLK, DAT[3:0]
HIGH	HIGH	2CMD, 2CLK,2DAT[3:0] connected to CMD, CLK, DAT[3:0]
LOW	X	CMD, DAT[3:0] ports high impedance; CLK is function of selected nCLK

Typical Application

Figure 4. Typical Application Diagram

Functional Description

The FSSD07 enables the multiplexing of dual ASIC / baseband processor hosts to a common peripheral card or module, providing bi-directional support of the dualvoltage SD/SDIO or MMC cards available in the marketplace. Each host SDIO port has its own supply rail, such that hosts with different supplies can be interfaced to a common peripheral module or card. The peripheral card supply must be equal to or greater than the host(s) to minimize power consumption. The independent $\mathrm{V}_{\mathrm{DDC}}$, $\mathrm{V}_{\mathrm{DDH} 1}$, and $\mathrm{V}_{\mathrm{DDH} 2}$ are defined by the supplies connected from the application Power Management ICs (PMICs) to the FSSD07. The clock path is a uni-directional buffered path rather than a bidirectional switch port. The supplies ($\mathrm{V}_{\mathrm{DDC}}, \mathrm{V}_{\mathrm{DDH} 1}$, and $\mathrm{V}_{\mathrm{DDH} 2}$) have an internal termination resistor (typically $3 \mathrm{M} \Omega$) to ensure the supply rails internally do not float if the application turns off one or all of these sources.

CMD, DAT Bus Pull-ups

The CMD and DAT[3:0] ports do not have, internally, the system pull-up resistors as defined in the MMC or SD card system bus specifications. The system bus pull-up must be added external to the FSSD07. The value, within the specific specification limits, is a function of the individual application and type of card or peripheral connected. For SD card applications, the $\mathrm{R}_{\mathrm{CMD}}$ and $\mathrm{R}_{\mathrm{DAT}}$ pull-ups should be between $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$. For MMC applications, the $\mathrm{R}_{\mathrm{CMD}}$ pull-ups should be between $4.7 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$, and the $\mathrm{R}_{\mathrm{DAT}}$ pull-ups between $50 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$. The card-side CMD and DAT[3:0] outputs have a circuit that facilitates incident wave switching, so the external pull-up resistors ensure retention of the output high level.

The OE pin can be used to place the CMD and DAT[3:0] into high-impedance mode during power-up sequencing or when the system enters IDLE state (see IDLE State CMD/DAT Bus "Parking").

CLK Bus

The 1CLK and 2CLK inputs are bi-state buffer architectures, rather than a switch I/O, to ensure 52 MHz incident wave switching. Since most host controllers also have a clock enable register bit to enable or disable the system clock when in IDLE mode, the CLK output is not disabled by the OE pin. Instead, the CLK output is a function of whichever host controller clock is selected by the S pin.
Consequently, there is always a clock path connected between the selected host and the card. The state of the CLK pin is a function of the selected host controller nCLK output pin, which facilitates retaining clock duty cycle in the system or performing read / wait operations.

IDLE State \& Power-Up CMD/DAT Bus "Parking"

The SD and MMC card specifications were written for a direct point-to-point communication between host controller and card. The introduction of the FSSD07 in that path, as an expander, requires that the functional operation and system latency not be impacted by the switch characteristics. Since there are various card formats, protocols, and configurable controllers, an OE pin is available to facilitate a fast IDLE transition for the CMD/DAT[3:0] outputs. Some controllers, rather than placing CMD/DAT into high-impedance mode, pull the outputs HIGH for a clock cycle prior to going into highimpedance mode (referred to as "parking" the output). Some legacy controllers pull their outputs HIGH versus high impedance.
If the OE pin is pulled HIGH and the controller places its command and data outputs into high-impedance (driving nCMD/nDAT[3:0]), the FSSD07 CMD/DAT[3:0] output rise time is a function of the RC time constant through the switch path. Pulling OE LOW puts the switches into high impedance, disabling communication from the host to card, and the CMD/DAT[3:0] outputs are pulled HIGH by the system pull-up resistors chosen for the application. This mechanism facilitates power-up sequencing by holding OE LOW until supplies are stable and communication between the host(s) and card is enabled.

Power Optimization

Since the FSSD07 has multiple supplies ($\mathrm{V}_{\mathrm{DDC}}$, $\mathrm{V}_{\mathrm{DDH} 1}$, and $\mathrm{V}_{\mathrm{DDH} 2}$), the control signals have been referenced to the card peripheral side ($\mathrm{V}_{\mathrm{DDC}}$). To minimize power consumption, current paths between supplies are isolated when one or more supplies are not present. This includes the configuration of the removal of $\mathrm{V}_{\mathrm{DDC}}$ with host controller supplies remaining present.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Min.	Max.	Unit
$V_{\text {DDC }}$	Card Supply Voltage		-0.5	4.6	V
$\mathrm{V}_{\mathrm{DDH} 1}, \mathrm{~V}_{\text {DDH2 }}$	Host Controller Supply Voltage		-0.5	4.6	V
$\mathrm{V}_{\text {SW }}$	Switch I/O Voltage ${ }^{(1)}$	1DAT[3:0], 2DAT[3:0], 1CMD, 2CMD Pins	-0.5	$\begin{gathered} \mathrm{V}_{\mathrm{DDx}}(2)+0.3 \mathrm{~V} \\ (4.6 \mathrm{~V} \text { maximum }) \end{gathered}$	V
		DAT[3:0], CMD Pins	-0.5	$\begin{gathered} \mathrm{V}_{\mathrm{DDx}}{ }^{(2)}+0.3 \mathrm{~V} \\ (4.6 \mathrm{~V} \text { maximum }) \end{gathered}$	V
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage ${ }^{(1)}$	S, OE	-0.5	4.6	V
$\mathrm{V}_{\text {CLKI }}$	CLK Input Voltage ${ }^{(1)}$	1CLK, 2CLK	-0.5	4.6	V
$\mathrm{V}_{\text {CLKO }}$	CLK Output Voltage ${ }^{(1)}$	CLK	-0.5	$\begin{gathered} \mathrm{V}_{\mathrm{DDx}}^{(2)}+0.3 \mathrm{~V} \\ (4.6 \mathrm{~V} \text { maximum }) \end{gathered}$	V
$\mathrm{I}_{\text {INDC }}$	Input Clamp Diode Current			-50	mA
$\mathrm{I}_{\text {sw }}$	Switch I/O Current	SDIO Continuous		50	mA
$I_{\text {SWPEAK }}$	Peak Switch Current	SDIO Pulsed at 1 ms Duration, <10\% Duty Cycle		100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature	Soldering, 10 Seconds		+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND		8	kV
		Supply to GND		10	
		All Other Pins		5	
	Charged Device Model, JEDEC-JESD-C101			2	

Notes:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.
2. $V_{D D x}$ references the specific SDIO port V_{DD} rail (i.e. $\mathrm{V}_{\mathrm{DDH}}, \mathrm{V}_{\mathrm{DDH}}, \mathrm{V}_{\mathrm{DDC}}$).

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\mathrm{DDC}}$	Supply Voltage - Card Side	1.65	3.60	V
$\mathrm{~V}_{\mathrm{DDH} 1}, \mathrm{~V}_{\mathrm{DDH} 2}$	Supply Voltage - Dual Host Controller	1.65	3.60	V
$\mathrm{~V}_{\mathrm{CNTRL}}$	Control Input Voltage $-\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{OE}}$	0	$\mathrm{~V}_{\mathrm{DDC}}$	V
$\mathrm{V}_{\mathrm{CLK} 1}$	Clock Input Voltage $-\mathrm{V}_{\mathrm{CLK}}$	0	$\mathrm{~V}_{\mathrm{DDH} 1 / \mathrm{H} 2}$	V
$\mathrm{~V}_{\mathrm{SW}}$	Switch I/O Voltage	CMD, DAT[3:0]	0	$\mathrm{~V}_{\mathrm{DDC}}$

DC Electrical Characteristics at 1.8 V VDDC

All typical values are for $\mathrm{V}_{\mathrm{DDC}}=1.8 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{DDC}}$ (V)	$\mathrm{V}_{\mathrm{DDH} 1} I$ $\mathrm{~V}_{\mathrm{DDH} 2}(\mathrm{~V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
			Min.		Max.		

Common Pins

V_{IK}	Clamp Diode Voltage	1.80	1.80	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.2	V
V_{IH}	Control Input Voltage High	1.80	1.80		1.3			V
$\mathrm{V}_{\text {IL }}$	Control Input Voltage Low	1.80	1.80				0.5	V
1 N	S, OE Input High Current	1.95	1.95	$\mathrm{V}_{\text {CNTRL }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DDC }}$	-1		1	$\mu \mathrm{A}$
l Oz	Off Leakage, Current of all ports	1.95	1.95	$\mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DDC }}$	-1.0	0.5	1.0	$\mu \mathrm{A}$
$V_{\text {OHC }}$	CLK Output Voltage High $^{(3)}$	1.95	1.95	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	1.6			V
$\mathrm{V}_{\text {OLC }}$	CLK Output Voltage Low ${ }^{(3)}$	1.65	1.65	$\mathrm{l}_{\mathrm{OL}}=-2 \mathrm{~mA}$			90	mV
R_{ON}	Switch On Resistance ${ }^{(4)}$	1.65	1.65	$\mathrm{V}_{\mathrm{CMD}, \mathrm{DAT}[3: 0]}=0 \mathrm{~V}$, $\mathrm{I}_{\mathrm{ON}}=-2 \mathrm{~mA}$ Figure 5			10	Ω
$\Delta \mathrm{R}_{\text {ON }}$	Delta On Resistance ${ }^{(3,5)}$	1.65	1.65	$\begin{aligned} & \mathrm{V}_{\mathrm{CMD}, \mathrm{DAT}[3: 00}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=-2 \mathrm{~mA} \end{aligned}$		0.85		Ω

Power Supply

$\mathrm{I}_{\mathrm{Cc}(\mathrm{VDDC})}$	Quiescent Supply Current (Card)	1.95	0	$\mathrm{V}_{\mathrm{SW}}=0$ or $\mathrm{V}_{\text {DDC }}, \mathrm{l}_{\text {OUT }}=0$			2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC(VDDH1/H2) }}$	Quiescent Supply Current (Hosts)	1.95	1.95	$V_{S W}=0$ or $V_{D D x}, I_{\text {OUT }}=0$, $\mathrm{V}_{\text {CLKI }}=\mathrm{V}_{\text {DDHX }}$, $\mathrm{V}_{\text {CLKO }}=$ Open, $\mathrm{OE}=\mathrm{V}_{\mathrm{DDC}}$			2	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {Host }}$	Delta $I_{\text {CC(VDDH1, VDDH2) }}$ for One Host Powered Off	1.95	$\begin{aligned} & 1.95 / 0 \\ & 0 / 1.95 \end{aligned}$	$V_{S W}=0$ or $V_{D D x}, I_{\text {OUT }}=0$, $\mathrm{V}_{\text {CLKI }}=\mathrm{V}_{\text {DDHX }}$, $\mathrm{V}_{\text {CLKO }}=$ Open, $\mathrm{OE}=\mathrm{V}_{\mathrm{DDC}}$			2	$\mu \mathrm{A}$

Notes:

3. Guaranteed by characterization, not production tested.
4. On resistance is determined by the voltage drop between the switch I / O pins at the indicated current through the switch.
5. $\quad \Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON} \text { max }}-\mathrm{R}_{\mathrm{ON} \text { min }}$ measured at identical V_{CC}, temperature, and voltage.

DC Electrical Characteristics at 2.7V VDDC

All typical values are for $\mathrm{V}_{\mathrm{DDC}}=2.7 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{DDC}}(\mathrm{V})$	$\begin{gathered} \mathrm{V}_{\mathrm{DDH} 1} \mathrm{I} \\ \mathrm{~V}_{\mathrm{DDH} 2}(\mathrm{~V}) \end{gathered}$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
					Min.	Typ.	Max.	
Common Pins								
V_{IK}	Clamp Diode Voltage	2.7	2.7	$\mathrm{I}_{\mathrm{K}}=-18 \mathrm{~mA}$			-1.2	
V_{IH}	Control Input Voltage High	2.7	2.7		1.8			V
VIL	Control Input Voltage Low	2.7	2.7				0.8	
I_{IN}	S, OE Input High Current	3.6	3.6	$\mathrm{V}_{\text {CNTRL }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DDC }}$	-1		1	$\mu \mathrm{A}$
I_{Oz}	Off Leakage Current of all Ports	3.6	3.6	$\mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DDC}}$	-1.0	0.5	1.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OHC }}$	CLK Output Voltage High ${ }^{(6)}$	2.7	2.7	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
$V_{\text {olc }}$	CLK Output Voltage Low $^{(6)}$	3.6	3.6	$\mathrm{l}_{\mathrm{OL}}=-2 \mathrm{~mA}$			90	mV
R_{ON}	Switch On Resistance ${ }^{(7)}$	2.7	2.7	$\mathrm{V}_{\text {CMD, DAT }[3: 0]}=0 \mathrm{~V}$, $\mathrm{I}_{\mathrm{ON}}=-2 \mathrm{~mA}$ Figure 5		5.0	8.0	Ω
$\Delta \mathrm{R}_{\text {ON }}$	Delta On Resistance ${ }^{(6,8)}$	2.7	2.7	$\begin{aligned} & \mathrm{V}_{\mathrm{CMD}, \mathrm{DAT[3:0]}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=-2 \mathrm{~mA} \end{aligned}$		0.8		Ω

Power Supply

$\mathrm{I}_{\text {cc(VDDC })}$	Quiescent Supply Current (Card)	3.6	0	$\mathrm{V}_{\text {SW }}=0$ or $\mathrm{V}_{\text {DDC }}$, $\mathrm{l}_{\text {OUT }}=0$			2	$\mu \mathrm{A}$
$\begin{gathered} \mathrm{I}_{\mathrm{CC}} \\ (\mathrm{VDH} 1 / \mathrm{C} 2) \end{gathered}$	Quiescent Supply Current (Hosts)	3.6	3.6	$\begin{aligned} & V_{\text {Sw }}=0 \text { or } V_{\text {DDx, }} I_{\text {IUT }}=0, \\ & V_{\text {CLLKI }}=V_{\text {DDHX }}, V_{\text {CLKO }}=\text { Open, }, \\ & O E=V_{\text {DDC }} \\ & \hline \end{aligned}$			2	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {Host }}$	Delta $I_{C C(V D D H 1, ~ V D D H 2) ~ f o r ~}$ One Card Powered Off	3.6	$\begin{aligned} & 3.6 / 0 \\ & 0 / 3.6 \end{aligned}$	$\begin{aligned} & V_{S W}=0 \text { or } V_{\text {DDx, }} l_{\text {OUT }}=0, \\ & V_{C L K I}=V_{D D H X}, V_{C L K O}=O p e n, \\ & O E=V_{D D C} \end{aligned}$			2	$\mu \mathrm{A}$

Notes:

6. Guaranteed by characterization, not production tested.
7. On resistance is determined by the voltage drop between the switch I / O pins at the indicated current through the switch.
8. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON} \text { max }}-\mathrm{R}_{\mathrm{ON} \text { min }}$ measured at identical V_{CC}, temperature, and voltage.

AC Electrical Characteristics at 1.8 V VDDC

All typical values are for $\mathrm{V}_{\mathrm{DDC}}=1.8 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{DDC}}(\mathrm{V})$	$\begin{gathered} \mathrm{V}_{\mathrm{DDH} 1} \mathrm{I} \\ \mathrm{~V}_{\mathrm{DDH} 2}(\mathrm{~V}) \end{gathered}$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
					Min.	Typ.	Max.	
t_{ON}	Turn-On Time, S, OE to CMD, DAT[3:0]	1.65 to 1.95	1.65 to 3.6	$\begin{aligned} & \mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \text { Figure 7, Figure } 8 \end{aligned}$		8	18	ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time, S, OE to CMD, DAT[3:0]	1.65 to 1.95	1.65 to 3.6	$\begin{aligned} & \mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \text { Figure 7, Figure } 8 \end{aligned}$		6	13	ns
$\begin{aligned} & \mathrm{t}_{\text {RISE1/ }} \\ & \text { FALL1 } \end{aligned}$	CMD/DAT Output Edge Rates ${ }^{(9)}$	1.65 to 1.95	1.65 to 3.6	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & (10-90 \%) \\ & \text { Figure 7, Figure } 8 \end{aligned}$		3		ns
$t_{\text {PD }}$	Switch Propagation Delay ${ }^{(9)}$	1.65 to 1.95	1.65 to 3.6	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ $\text { Figure 7, Figure } 89$		4.5	9	ns
$\mathrm{t}_{\mathrm{pLH}}$	LH Propagation Delay 1CLK, 2CLK to CLK	1.65 to 1.95	1.65 to 3.6	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ Figure 10, Figure 11		4	6	ns
$\mathrm{t}_{\mathrm{pHL}}$	HL Propagation Delay 1CLK, 2CLK to CLK	1.65 to 1.95	1.65 to 3.6	$C_{L}=20 \mathrm{pF}$ Figure 10, Figure 11		4	6	ns
$\mathrm{t}_{\text {RISE2I }}$ FALL2	CLK Output Edge Rates ${ }^{(9)}$	1.65 to 1.95	1.65 to 3.6	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}(10-90 \%)$ Figure 7, Figure 8		3		ns
OIRR	Off Isolation ${ }^{(9)}$	1.8	1.65 to 3.6	$\begin{aligned} & \mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \\ & \text { Figure } 12 \end{aligned}$		-60		dB
Xtalk	Non-Adjacent Channel Crosstalk ${ }^{(9)}$	1.8	1.65 to 3.6	$\begin{aligned} & \mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \\ & \text { Figure } 13 \end{aligned}$		-60		dB
$\mathrm{f}_{\text {toggle }}$	Clock Frequency ${ }^{(9)}$	1.8	1.65 to 3.6	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		75		MHz

Note:
9. Guaranteed by characterization, not production tested.

AC Electrical Characteristics at 3.3V VDDC

All typical values are for $\mathrm{V}_{\mathrm{DDC}}=3.3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{DDC}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{DDH} 1} / \mathrm{V}_{\mathrm{DDH} 2}$ (V)	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$			Unit
					Min.	Typ.	Max.	
t_{oN}	Turn-On Time, S, OE to CMD, DAT[3:0]	2.7 to 3.6	1.65 to 3.6	$\begin{aligned} & \mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \text { Figure 7, Figure } 8 \end{aligned}$		8	18	ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time, S, OE to CMD, DAT[3:0]	2.7 to 3.6	1.65 to 3.6	$\begin{aligned} & \mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \text { Figure 7, Figure } 8 \end{aligned}$		6	13	ns
$\begin{aligned} & \mathrm{t}_{\text {RISE1/ }} \\ & \text { FALL1 } \end{aligned}$	CMD/DAT Output Edge Rates ${ }^{(10)}$	2.7 to 3.6	1.65 to 3.6	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}(10- \\ & 90 \%) \end{aligned}$ Figure 7, Figure 8		3		ns
$t_{\text {PD }}$	Switch Propagation Delay ${ }^{(10)}$	2.7 to 3.6	1.65 to 3.6	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ Figure 7, Figure 8		2.5	6	ns
$\mathrm{t}_{\mathrm{pLH}}$	LH Propagation Delay 1CLK, 2CLK to CLK	2.7 to 3.6	1.65 to 3.6	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \text { Figure 10, Figure } 11 \end{aligned}$		4	6	ns
$\mathrm{t}_{\mathrm{pHL}}$	HL Propagation Delay 1CLK, 2CLK to CLK	2.7 to 3.6	1.65 to 3.6	$\begin{array}{\|l} \hline \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ \text { Figure 10, Figure } 11 \end{array}$		4	6	ns
$\mathrm{t}_{\text {RISE2/ }}$ FALL2	CLK Output Edge Rates ${ }^{(10)}$	2.7 to 3.6	1.65 to 3.6	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}(10-90 \%)$ Figure 7, Figure 8		3		ns
$\mathrm{O}_{\text {IRR }}$	Off Isolation ${ }^{(10)}$	2.7	1.65 to 3.6	$\begin{aligned} & \mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \\ & \text { Figure } 12 \end{aligned}$		-60		dB
Xtalk	Non-Adjacent Channel Crosstalk ${ }^{(10)}$	2.7	1.65 to 3.6	$\begin{aligned} & \mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \\ & \text { Figure } 13 \end{aligned}$		-60		dB
$\mathrm{f}_{\text {toggle }}$	Clock Frequency ${ }^{(10)}$	2.7	1.65 to 3.6	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		75		MHz

Note:
10. Guaranteed by characterization, not production tested.

Capacitance

Symbol	Parameter	$\mathrm{V}_{\mathrm{DDC}}$ (V)	$\mathrm{V}_{\mathrm{DDH} 1 / \mathrm{H} 2}$ (V)	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
					Min.	Typ.	Max.	
$\mathrm{C}_{\mathrm{IN}(\mathrm{S}, \mathrm{oe},}$ CLK)	Control and nCLK Pin Input Capacitance ${ }^{(11)}$	0	2.7	$V_{\text {DDC }}=0 \mathrm{~V}$		2.5		pF
$\mathrm{C}_{\text {ON }}$	Common Port On Capacitance ${ }^{(1)}$ (C $\mathrm{Catti:O]}$,CmD)	2.7	2.7	$\mathrm{V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{DDC}}, \mathrm{~V}_{\text {bias }}=0.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ Figure 14		7.5		pF
$\mathrm{C}_{\text {OfF }}$	Input Source Off Capacitance ${ }^{(11)}$	2.7	2.7	$\mathrm{V}_{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{~V}_{\text {bias }}=0.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ Figure 15		4		pF

Note:

11. Guaranteed by characterization, not production tested.

Test Diagrams

Figure 5. On Resistance

R_{L}, R_{S}, and C_{L} are functions of the application environment (see AC tables for specific values). C_{L} includes test fixture and stray capacitance.

Figure 7. AC Test Circuit Load

Figure 9. Switch Propagation Delay (t_{PD}) Waveform

Each switch port tested separately.

Figure 6. Off Leakage

Figure 8. Turn On/Off Time Waveforms

Figure 10. AC Test Circuit Load (CLK)

Test Diagrams (Continued)

Figure 11. CLK Propagation Delay Waveforms

Off Isolation $=20 \log \left(\mathrm{~V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$

Figure 12. Channel Off Isolation

Figure 13. Channel-to-Channel Crosstalk

Figure 14. Channel On Capacitance
Figure 15. Channel Off Capacitance

NOTES:

A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WFSD-2 FOR DIMENSIONS ONLY.
PIN NUMBERING DOES NOT COMPLY.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP24Brev4

APPROVALS	DATE			
Fexmv FEITAN	31-3-2003			
оптс. снк.		24LD, MLP, QUAD, JEDEC MO-220, 3.5×4.5 MM		
EnNor. CHK.				
${ }^{\text {Prousection }}$		scale	DRawng numer	REV
)		N/A N/A	MKT-MLP24B	4
		DO NOT SCALE	DRAWING SHEET	1 of 1

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 TC4066BP-NF HEF4053BT. 653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D.112 74HCT4052DB. 112 74HCT4053DB. 112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 596287716022A ADG5249FBRUZ

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

