FST3125

4-Bit Bus Switch

The ON Semiconductor FST3125 is a quad, high performance switch. The device is CMOS TTL compatible when operating between 4 and 5.5 Volts. The device exhibits extremely low R_{ON} and adds nearly zero propagation delay. The device adds no noise or ground bounce to the system.

The device consists of four independent 1-bit switches with separate Output/Enable ($\overline{\mathrm{OE}})$ pins. Port A is connected to Port B when $\overline{\mathrm{OE}}$ is low. If $\overline{\mathrm{OE}}$ is high, the switch is high Z .

Features

- $\mathrm{R}_{\mathrm{ON}}<4 \Omega$ Typical
- Less Than 0.25 ns-Max Delay Through Switch
- Nearly Zero Standby Current
- No Circuit Bounce
- Control Inputs are TTL/CMOS Compatible
- Pin-For-Pin Compatible With QS3125, FST3125, CBT3125
- All Popular Packages: TSSOP-14, SOIC-14
- These are $\mathrm{Pb}-$ Free Devices

Figure 1. Pin Assignment for SOIC and TSSOP
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING DIAGRAMS

14

ABABA
FST
3125
ALYW•
\bigcirc
THETH

A = Assembly Location
WL, L = Wafer Lot
Y = Year
WW, W = Work Week
G or • = Pb-Free Package
(Note: Microdot may be in either location)

PIN NAMES

Pin	Description
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}, \overline{\mathrm{OE}}_{3}, \overline{\mathrm{OE}}_{4}$	Bus Switch Enables
$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}$	Bus A
$1 \mathrm{~B}, 2 \mathrm{~B}, 3 \mathrm{~B}, 4 \mathrm{~B}$	Bus B
NC	Not Connected

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Figure 2. Logic Diagram

TRUTH TABLE

Inputs	Outputs
$\overline{\mathrm{OE}}$	A, B
L	$\mathrm{A}=\mathrm{B}$
H	Z

ORDERING INFORMATION

Device Order Number	Package	Shipping †
FST3125DR2G	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel
FST3125DTR2G	TSSOP-14 (Pb-Free)	2500 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to +7.0	V
V_{0}	DC Output Voltage	-0.5 to +7.0	V
I_{IK}	DC Input Diode Current $\quad \mathrm{V}_{1}<\mathrm{GND}^{\text {a }}$	-50	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	-50	mA
Io	DC Output Sink Current	128	mA
ICC	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+ 150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Note 1) $\begin{aligned} & \text { SOIC } \\ & \text { TSSOP }\end{aligned}$	$\begin{aligned} & \hline 125 \\ & 170 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model	$\begin{aligned} & >4000 \\ & >400 \\ & >2000 \end{aligned}$	V
ILatchup	Latchup Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 4)	± 100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Supply Voltage	Operating, Data Retention Only	4.0	5.5	V
V_{1}	Input Voltage	(Note)	0	5.5	V
V_{O}	Output Voltage	(HIGH or LOW State)	0	5.5	V
T_{A}	Operating Free-Air Temperature		-55	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate	Switch Control Input Switch I/O	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 5 \\ \text { DC } \end{gathered}$	ns / V

5. Unused control inputs may not be left open. All control inputs must be tied to a high- or low-logic input voltage level.

FST3125

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			Unit
				Min	Typ*	Max	
V_{IK}	Clamp Diode Resistance	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	4.5			-1.2	V
V_{IH}	High-Level Input Voltage		4.0 to 5.5	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		4.0 to 5.5			0.8	V
1	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	5.5			± 1.0	$\mu \mathrm{A}$
loz	OFF-STATE Leakage Current	$0 \leq A, B \leq V_{C C}$	5.5			± 1.0	$\mu \mathrm{A}$
R_{ON}	Switch On Resistance (Note 6)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$	4.5		4	7	Ω
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$	4.5		4	7	
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$	4.5		8	15	
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$	4.0		11	20	
ICC	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND, IOUT $=0$	5.5			3	$\mu \mathrm{A}$
$\Delta \mathrm{l}$ CC	Increase In ICC per Input	One input at 3.4 V , Other inputs at V_{CC} or GND	5.5			2.5	mA

*Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
6. Measured by the voltage drop between A and B pins at the indicated current through the switch.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Figures					Unit
				$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
				$\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$		
				Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}}, \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	Prop Delay Bus to Bus (Note 7)	$\mathrm{V}_{1}=$ OPEN	3 and 4		0.25		0.25	ns
$\begin{aligned} & \text { tpzH, } \\ & \text { tphe }^{2} \end{aligned}$	Output Enable Time	$\mathrm{V}_{1}=7 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{PZL}}$ $V_{1}=$ OPEN for $t_{P Z H}$	3 and 5	1.0	5.0		5.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PHZ }}, \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time	$\mathrm{V}_{1}=7 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{pLz}}$ $V_{1}=$ OPEN for $\mathrm{t}_{\mathrm{PHz}}$	3 and 5	1.5	5.3		5.6	ns

7. This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

CAPACITANCE (Note 8)

Symbol	Parameter	Conditions	Typ	Max	Unit
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	3		pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}=5.0 \mathrm{~V}}$	5		pF

8. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

NOTES:

1. Input driven by 50Ω source terminated in 50Ω.
2. CL includes load and stray capacitance. ${ }^{*} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Figure 3. AC Test Circuit

Figure 4. Propagation Delays

Figure 5. Enable/Disable Delays

CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER 5. MAXIM
SIDE.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	1.35	1.75	0.054	0.068		
A1	0.10	0.25	0.004	0.010		
A3	0.19	0.25	0.008	0.010		
b	0.35	0.49	0.014	0.019		
D	8.55	8.75	0.337	0.344		
E	3.80	4.00	0.150	0.157		
e	1.27		BSC	0.050		BSC
H	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.019		
L	0.40	1.25	0.016	0.049		
M	0°	7°	0°	7°		

GENERIC
MARKING DIAGRAM*
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

[^0]STYLE 1:
PIN 1. COMMON CATHODE 2. ANODE/CATHODE ANODE/CATHODE
. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
2. ANODE/CATHODE
3. NO CONNECTION
4. COMMON ANODE

STYLE $5:$
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHODE
4. ANODE/CATHODE
6. ANODE/CATHODE
7. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
0. ANODE/CATHODE
11. ANODE/CATHODE
2. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2:
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6:
PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
4. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD

ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
. COMMON ANODE
. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
12. COMMON ANODE
13. ANODE/CATHODE
14. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE
4. NO CONNECTION 5. CATHODE
6. NO CONNECTION
7. CATHODE
8. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 2 OF 2 |

[^1] rights of others.

DIMENSIONS：MILLIMETERS

NOTES：

．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982
2．CONTROLLING DIMENSION：MILLIMETER．
3．DIMENSION A DOES NOT INCLUDE MOLD FLASH，PROTRUSIONS OR GATE BURRS． FLASH，PROTRUSIONS OR GATE BURRS． MOLD FLASH OR GATE BURRS
4．DIMENSION BDOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION． INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 （ 0.010 ）PER SIDE．
5．DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 （0．003）TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION．
6．TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7．DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE－W－．

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	－－－	1.20	－－－	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM＊

14 月HBHE日为
XXXX
XXXX
ALYW•
\bigcirc－
渣昰

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
－	$=$ Pb－Free Package

（Note：Microdot may be in either location）
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-F r e e ~ i n d i c a t o r, ~ " ~ G " ~ o r ~ m i c r o d o t ~ " ~ " ", ~$ may or may not be present．

| DOCUMENT NUMBER： | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontroled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | TSSOP－14 WB | PAGE 1 OF 1 |

[^2]ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK

[^0]: ON Semiconductor and (IN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^2]: ON Semiconductor and UN are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．

