

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAIRCHILD

FST3244－8－Bit Bus Switch

Features

－ 4Ω Switch Connection between Two Ports
－Minimal Propagation Delay through the Switch
－Low I_{Cc}
－Zero Bounce in Flow－through Mode
－Control Inputs Compatible with TTL Level

Description

The FST3244 switch provides eight－bits of high－speed， CMOS，TTL－compatible bus switching in a standard＇244 pin－out．The low on resistance allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise．

The device is organized as two four－bit switches with separate／OE inputs．When／OE is LOW，the switch is ON and port A is connected to port B ．When／OE is HIGH，the switch is OPEN and a high－impedance state exists between the two ports．

Ordering Information

| Part Number | Operating
 Temperatur
 e Range | Package | Packing
 Method |
| :--- | :---: | :--- | :--- | :--- |
| FST3244MTCX | -40 to $+85^{\circ} \mathrm{C}$ | 20－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，
 4.4 mm Wide | Tape and
 Reel |

Logic Diagram

Figure 1．Logic Diagram

Pin Configurations

Figure 2. Pin Configuration

Pin Descriptions

Pin \#	Pin Names	Description
1,19	$/ \mathrm{OE}_{1}, / \mathrm{OE}_{2}$	Bus Switch Enables
$2,4,6,8,11,13,15,17$	$1 \mathrm{~A}, 2 \mathrm{~A}$	Bus A
$3,5,7,9,12,14,16,18$	$1 \mathrm{~B}, 2 \mathrm{~B}$	Bus B
20	$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage
10	GND	Ground

Truth Table

Inputs		Inputs/Outputs	
IOE1	IOE $_{2}$	1A, 1B	2A, 2B
LOW	LOW	$1 \mathrm{~A}=1 \mathrm{~B}$	$2 \mathrm{~A}=2 \mathrm{~B}$
LOW	HIGH	$1 \mathrm{~A}=1 \mathrm{~B}$	High Impedance
HIGH	LOW	High Impedance	2A = 2B
HIGH	HIGH	High Impedance	High Impedance

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	-0.5	7.0	V
$\mathrm{~V}_{\mathrm{S}}$	DC Switch Voltage	-0.5	7.0	V
$\mathrm{~V}_{\text {IN }}$	DC Input VoItage ${ }^{(1)}$	-0.5	7.0	V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$		-50	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Sink Current		128	mA
$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$	DC $\mathrm{V}_{\mathrm{CC}} /$ GND Current		± 100	mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$

Note:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Power Supply Operating	4.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	0	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	Output Voltage	0	5.5	V
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	Switch Control Input ${ }^{(2)}$	0	5
		Switch I/O	ns / V	
T_{A}	Operating Temperature, Free Air	0		

Note:
2. Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
V_{IK}	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	4.5			-1.2	V
V_{IH}	High-Level Input Voltage		4.0 to 5.5	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		4.0 to 5.5			0.8	V
I_{IN}	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	5.5			± 1.0	$\mu \mathrm{A}$
I_{Oz}	Off-state Leakage Current	$0 \leq A, B \leq V_{c c}$	5.5			± 1.0	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	Switch On Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$	4.5		4	7	Ω
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=30 \mathrm{~mA}$	4.5		4	7	
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$	4.5		8	15	
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$	4.0		11	20	
$I_{\text {cc }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{l}_{\text {OUT }}=0 \end{aligned}$	5.5			3	$\mu \mathrm{A}$
$\Delta l_{\text {cc }}$	Increase in $\mathrm{I}_{\text {cc }}$ per Input	One Input at 3.4 V , Other Inputs at V_{Cc} or GND	5.5			2.5	mA

Note:

3. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the A or B pins.

AC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, and $\mathrm{R}_{\mathrm{U}}=\mathrm{R}_{\mathrm{D}}=500 \Omega$.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=4.0 \mathrm{~V}$		Units	Figure
			Min.	Max.	Min.	Max.		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Bus-to Bus ${ }^{(4)}$	$\mathrm{V}_{\text {IN }}=$ Open		0.25		0.25	ns	Figure 3 Figure 4
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & \mathrm{V}_{\text {IN }}=7 \mathrm{~V} \text { for } \mathrm{t}_{\text {PZL }} \\ & \mathrm{V}_{\text {IN }}=\text { Open for } \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	1.0	5.6		6.1	ns	Figure 3 Figure 4
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	$\begin{aligned} & V_{\text {IN }}=7 \mathrm{~V} \text { for } \mathrm{t}_{\text {PLZ }} \\ & V_{\text {IN }}=\text { Open for } \\ & t_{\text {PHZ }} \end{aligned}$	1.0	6.2		5.6	ns	Figure 3 Figure 4

Note:

4. This parameter is guaranteed by design, but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical on resistance of the switch and the 50 pF load capacitance when driven by an ideal voltage source (zero output impedance).

Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$. Capacitance is characterized, but not tested.

Symbol	Parameter	Conditions	Typ.	Units
$\mathrm{C}_{1 \mathrm{~N}}$	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	3	pF
$\mathrm{C}_{/ / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}, / \mathrm{OE}=5.0 \mathrm{~V}$	5	pF

AC Loadings and Waveforms

Figure 3. AC Test Circuit

Figure 4. AC Waveforms

Physical Dimensions

LAND PATTERN RECOMMENDATION

Figure 5. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4 mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

FAIRCHILD
 sEMICONDUCTOF*

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2 Coolm	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {®0 }}$
AccuPowertm	FRFET ${ }^{\text {® }}$	Power $\times S^{\text {TM }}$	the
AX-CAPтм*	Global Power Resource ${ }^{\text {sin }}$	Programmable Active Drooptm	P Wer
BitSiC'm	GreenBridge ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	
Build it Now ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyBucktm
CorePLUSTM	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {m }}$
CorePOVER ${ }^{\text {m }}$	Gmax ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {(}}$
CROSSVOLT ${ }^{\text {TM }}$	GTOTM	$)^{\text {Tm }}$	TINYOPTOTM
CTL ${ }^{\text {™ }}$	IntelliMAX'm	Saving our morld, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TinyPowertm
Current Transfer Logic ${ }^{\text {m }}$	ISOPLANAR ${ }^{\text {TM }}$ (${ }^{\text {a }}$	SignalMise ${ }^{\text {Tm }}$	TinyPMM ${ }^{\text {TM }}$
DEUXPEED ${ }^{\text {a }}$	Making Small Speakers Sound Louder	SmartMax ${ }^{\text {™ }}$	Tiny ${ }^{\text {Mire }}{ }^{\text {m }}$
Ecospark ${ }^{\text {® }}$	MegaBuck ${ }^{\text {™ }}$	SMART STARTTM	TranSictm
EfficientMax ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {™ }}$	Solutions for Your Success ${ }^{\text {TM }}$ SPM ${ }^{\text {® }}$	TriFault Detect ${ }^{\text {TM }}$,
ESBC'm	MicroFETM	STEALTH ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {™ }}$
$5^{\text {® }}$	MicroPak'm	SuperFET ${ }^{\text {® }}$	\boldsymbol{H}
Fairchild ${ }^{\text {® }}$	MicroPak2 ${ }^{\text {Tm }}$	SuperSOTTM-3	SerDes:
Fairchild Semiconductor ${ }^{(1)}$	MilierDrive ${ }^{\text {a }}$	SuperSOT ${ }^{\text {Tm-6 }}$	UHC ${ }^{\text {® }}$
FACT Quiet Series ${ }^{\text {™ }}$	miNSavertm	SuperSOTTM-8	Ultra FRFET ${ }^{\text {TM }}$
FACT ${ }^{\text {® }}$	Opto HiT'm	SupreMOS	UniFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	OPTOLOGIC®	SyncFET ${ }^{\text {TM }}$	VCX ${ }^{\text {Tm }}$
FastvCore ${ }^{\text {TM }}$	OPTOPLANAR®	Sync-Lock ${ }^{\text {m }}$	VisualMax ${ }^{\text {Tm }}$
FETBench ${ }^{\text {TM }}$		ऽGENERAL ${ }_{\text {¢ }}$	VoltagePlus ${ }^{\text {TM }}$
FPS ${ }^{\text {™ }}$			XS ${ }^{\text {TM }}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WTHOUT FURTHER NOTICE TOANY PRODUCTS HEREIN TO IMPROVE REUABIUTY, FUNCTION, ORDESIGN. FAIRCHILDDOES NOTASSUME ANY LIABIUTY ARISING OUT OF THE APPLICATION ORUSE OF ANY PRODUCT OR CIRCUITDESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY UCENSE UNDER ITS PATENTRGHTS NOR THERIGHTS OF OTHERS THESE SPECIFICATIONS DONOT EXPAND THE TERMS OF FAIROHID'SWORLDMDE TERMS AND CONDITONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHID'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHID SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Antr-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal nebsite, whw.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly fromFairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceabiity, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address ary warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is commited to corrbat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1
PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE
PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH400ZBEX PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F
74CB3Q3125DBQRE4 TC7WBL3305CFK,LF SN74CBT16245CDGGR 72V90823PQFG PI3B3861QEX PI3C3126QEX PI3C3245QE
PI5C3384QE PI3CH281QE QS3VH16244PAG8 PI3C3306LE PI3C3305LE PI5C3245LE PI3CH400LE PI3B3245LEX PI3B3245LE
PI3C3306LEX PI5C3245LEX PI5C3306LEX PI3B3126LE 74CBTLV3384PGG 74CBTLV3862PGG QS3125QG8 QS3126QG
QS32245QG QS32X384Q1G

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

