ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{\text {® }}$

FSUSB42 - Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) UART Switch

Features

- Low On Capacitance: 3.7 pF Typical
- Low On Resistance: 3.9Ω Typical
- Low Pow er Consumption: $1 \mu \mathrm{~A}$ Maximum
- $15 \mu \mathrm{~A}$ Maximum Iсст over an Expanded Voltage

Range ($\mathrm{V}_{\mathbb{I}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.4 \mathrm{~V}$)

- Wide -3 db Bandw idth: > 720 MHz
- Packaged in:
- 10-Lead UMLP ($1.4 \times 1.8 \mathrm{~mm}$)
- 10-Lead MSOP
- 8 kV ESD Rating, $>16 \mathrm{kV}$ Power / GND ESD Rating
- Over-Voltage Tolerance (OVT) on all USB Ports Up to 5.25 V w ithout External Components

Applications

- Cell phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description

The FSUSB42 is a bi-directional, low-power, two-port, high-speed, USB2.0 switch. Configured as a doublepole, double-throw switch (DPDT) switch, it is optimized for switching between any combination of high-speed (480 Mbps) or Full-Speed (12 Mbps) sources.

The FSUSB42 is compatible with the requirements of USB2.0 and features an extremely low on capacitance (Con) of 3.7 pF . The wide bandw idth of this device (720 MHz) exceeds the bandw idth needed to pass the third harmonic, resulting in signals w ith minimum edge and phase distortion. Superior channel-to-channel crosstalk also minimizes interference.

The FSUSB42 contains special circuitry on the switch VO pins for applications where the $V_{C C}$ supply is pow ered-off ($\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the SEL pin is low er than the supply voltage (V_{Cc}). This feature is especially valuable to ultra-portable applications, such as cell phones, allow ing for direct interface with the generalpurpose VOs of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSUSB42UMX	HE	-40 to $+85^{\circ} \mathrm{C}$	$10-$ Lead, Quad, Ultrathin Molded Leadless Package (UMLP), $1.4 \times 1.8 \mathrm{~mm}$
FSUSB42MUX	FSUSB42	-40 to $+85^{\circ} \mathrm{C}$	$10-$ Lead, Molded Small-Outline Package (MSOP) JEDEC MO-187, 3.0 mm Wide

Figure 1. Analog Symbol

Pin Assignments

Figure 2. 10-Lead UMLP (Top-Through View)

Figure 3. 10-Lead MSOP (Top-Through View)

Pin Definitions

UMLP Pin\#	MSOP Pin\#	Name	Description
1	3	D+	Common USB Data Bus
2	4	D-	Common USB Data Bus
3	5	GND	Ground
4	6	HSD1-	Multiplexed Source Input 1
5	7	HSD1+	Multiplexed Source Input 1
6	8	HSD2-	Multiplexed Source Input 2
7	9	HSD2+	Multiplexed Source Input 2
8	10	OEE	Sw itch Enable
9	1	Vcc	Supply Voltage
10	2	Sel	Switch Select

Truth Table

SEL	/OE	Function
X	HIGH	Disconnect
LOW	LOW	D+= HSD1+, D-= HSD1-
HIGH	LOW	D+= HSD2+, D-= HSD2-

Notes:

1. $\mathrm{LOW} \leq \mathrm{V}_{\mathrm{IL}}$.
2. $\mathrm{HIGH} \geq \mathrm{V}_{\mathrm{IH}}$.
3. $X=$ Don't Care.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V Cc	Supply Voltage		-0.5	5.6	V
$V_{\text {cntrl }}$	DC Input Voltage (S, /OE) ${ }^{(4)}$		-0.5	Vcc	V
V ${ }_{\text {Sw }}$	DC Sw itch VO Voltage ${ }^{(4)}$ (VCC=0V)		-0.50	5.25	V
l\|k	DC Input Diode Current		-50		mA
lout	DC Output Current			100	mA
TSTG	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity Level (JEDEC J-STD-020A)			1	Level
ESD	Human Body Model, JEDEC: JESD22-A114	All Pins	7		kV
		VO to GND	8		
		Pow er to GND	16		
		D+/D-	9		
	IEC 61000-4-2 System on USB Connector Pins D+ \& D-	Air Discharge	15		
		Contact	8		
	Charged Device Model, JEDEC: JESD22-C101		2		

Note:

4. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	2.4	4.4	V
$\mathrm{~V}_{\mathrm{CNTRL}}$	Control Input Voltage $(\mathrm{S}, / \mathrm{OE})^{(5)}$	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Sw itch VO Voltage	-0.5	4.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Note:
5. The control input must be held HIGH or LOW and it must not float.

DC Electrical Characteristics

All typical value are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{l}_{\mathrm{l}}=-18 \mathrm{~mA}$	3.0			-1.2	V
V_{IH}	Input Voltage High		2.4 to 3.6	1.3			V
			4.3	1.7			
VIL	Input Voltage Low		2.4 to 3.6			0.5	V
			4.3			0.7	
IN	Control Input Leakage	Vsw=0 to Vcc	0 to 4.3	-1		1	$\mu \mathrm{A}$
loz	Off State Leakage	$\begin{aligned} & 0 \leq \text { Dn, HSD1n, HSD2n } \\ & \leq 3.6 \mathrm{~V} \end{aligned}$	4.3	-2		2	$\mu \mathrm{A}$
loff	Pow er-Off Leakage Current (All VO Ports)	$\mathrm{V}_{\mathrm{sw}}=0 \mathrm{~V} \text { to } 4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0 \mathrm{~V}$ Figure 5	0	-2		2	$\mu \mathrm{A}$
Ron	HS Sw itch On Resistance ${ }^{(6)}$	$\mathrm{V}_{\mathrm{SW}}=0.4 \mathrm{~V}$, $\mathrm{l}_{\mathrm{oN}}=-8 \mathrm{~mA}$ Figure 4	2.4		4.5	7.5	Ω
			3.0		3.9	6.5	
\triangle Ron	HS Delta Ron ${ }^{(7)}$	$\mathrm{V}_{\text {SW }}=0.4 \mathrm{~V}, \mathrm{lon}=-8 \mathrm{~mA}$	3.0		0.65		Ω
Icc	Quiescent Supply Current	$\mathrm{V}_{\text {CNTRL }}=0$ or $\mathrm{V}_{\text {cc }}$, lout $=0$	4.3			1	$\mu \mathrm{A}$
Icct	Increase in Icc Current per Control Voltage and Vcc	$\mathrm{V}_{\text {CNTRL }}=2.6 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=4.3 \mathrm{~V}$	4.3			10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CNTRL }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {cC }}=4.3 \mathrm{~V}$	4.3			15	$\mu \mathrm{A}$

Notes:

6. Measured by the voltage drop betw een HSDn and Dn pins at the indicated current through the sw itch.

On resistance is determined by the low er of the voltage on the two (HSDn or Dn ports).
7. Guaranteed by characterization.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
ton	Turn-On Time S, /OE to Output	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{sw}}=0.8 \mathrm{~V} \text {, }$ Figure 6, Figure 7	2.4		24	40	ns
			3.0 to 3.6		13	30	
toff	Turn-Off Time S, /OE to Output	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=0.8 \mathrm{~V} \text {, }$ Figure 6, Figure 7	2.4		15	35	ns
			3.0 to 3.6		12	25	
tpd	Propagation Delay ${ }^{8}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, Figure 6, Figure 8	3.3		0.25		ns
tBBM	Break-Before-Make	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{SW} 1}=\mathrm{V}_{\mathrm{SW}}=0.8 \mathrm{~V}, \text { Figure } 10 \end{aligned}$	2.4	2.0		10	ns
			3.0 to 3.6	2.0		6.5	
OIRR	Off Isolation	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{~S}, \mathrm{f}=240 \mathrm{MHz}$, Figure 12	3.0 to 3.6		-30		dB
Xtalk	Non-Adjacent Channel Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz}$, Figure 13	3.0 to 3.6		-45		dB
BW	-3db Bandw idth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$, Figure 11	3.0 to 3.6		720		MHz
		RL=50 Ω, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Figure 11			550		MHz

Note:
8. Guaranteed by characterization.

USB High-Speed-Related AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85*${ }^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
tsk(P)	Skew of Opposite Transitions of the Same Output ${ }^{9}$	$\mathrm{CL}=5 \mathrm{pF}, \mathrm{RL}=50 \Omega$, Figure 9			20		ps
t	Total Jitter ${ }^{(9)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=500 \mathrm{ps}(10-90 \%) \text { at } \\ & 480 \mathrm{Mbps}\left(\mathrm{PRBS}=2^{15}-1\right) \end{aligned}$			200		ps

Note:
9. Guaranteed by characterization.

Capacitance

Symbol	Parameter	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	
CIN	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$		1.5		pF
Con	D+/D- On Capacitance	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, / \mathrm{OE}=0 \quad \mathrm{~V}, \mathrm{f}=240 \mathrm{MHz},$ Figure 15		3.7		
Coff	D1n, D2n Off Capacitance	V_{cc} and /OE=3.3 V, Figure 14		2.0		

Test Diagrams

Figure 4. On Resistance

R_{L}, R_{S}, and C_{L} are functions of the application environment (see AC Tables for specific values) C_{L} includes test fixture and stray capacitance.

Figure 6. AC Test Circuit Load

Figure 8. Propagation Delay ($\mathrm{t}_{\mathrm{R}} \mathrm{f}_{\mathrm{F}}-500 \mathrm{ps}$)

**Each switch port is tested separately

Figure 5. Off Leakage

Figure 7. Turn-On / Turn-Off Waveforms

Figure 9. Intra-Pair Skew Test tsk(P)

Test Diagrams (Continued)

R_{L}, R_{S}, and C_{L} are functions of the application
environment (see AC Tables for specific values)
C_{L} includes test fixture and stray capacitance.
Figure 10. Break-Before-Make Interval Timing
 environment (see AC Tables for specific values).

Figure 11. Bandw idth

Off isolation $=20$ Log $\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
Figure 12. Channel Off Isolation

Figure 13. Non-Adjacent Channel-to-Channel Crosstalk

Figure 14. Channel Off Capacitance

Figure 15. Channel On Capacitance

Physical Dimensions

OPTIONAL MINIMIAL TOE LAND PATTERN

NOTES:
A. PACKAGE DOES NOT CONFORM TO ANY JEDEC STANDARD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
E. DRAWING FILENAME: MKT-UMLP10Arev6.

Physical Dimensions (Continued)

Figure 17. 10-Lead, Molded Small Outline Package (MSOP)

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee reg arding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. Americ an Technical Support: 800-282-9855 Toll Free ON Semic onductor Website: www.onsemicom USA/Canada.
Eur ope, Middle East and Afr ica Technical Support: Order Literature: http://www.onsemi.com/orderit Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NLAS7222AMTR2G NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI3USB31532ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FSUSB42MUX FT234XD-R PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4717ETB+T MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4899EETE+ MAX4906EFELB+T MAX4907FELA+T MAX4907ELA+T MAX4983EEVB+T MAX4984EEVB+T MAX4899AEETE+T MAX14618ETA+T

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

