ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{\text {® }}$

FSUSB63 - 3:1 High-Speed USB 2.0 Switch / Multiplexer

Features

Sw itch Type	3:1 USB Sw itch
USB	USB 2.0 High-Speed \& Full-Speed Compliant
Break-Before-Make Time	126 s
Ron	6Ω Typical
Con	6pF Typical
Bandw idth	830MHz
Vcc	2.7 to 4.4V
VCNTRL	0 to Vcc
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
lCCSLP	$<1 \mu \mathrm{~A}$
lccact	$7.5 \mu \mathrm{~A}$ Typical
Package	$12-$ Lead UMLP $1.80 \times 1.80 \times$ $0.55 \mathrm{~mm}, 0.40 \mathrm{~mm}$ pitch
Top Mark	KG
Ordering Information	FSUSB63UMX

Applications

- Cell Phone, Digital Camera, Notebook
- LCD Monitor, TV, and Set-Top Box
- Netbook, Mobile Internet Device (MID)

Description

The FSUSB63 is a bi-directional, low -pow er, High-Speed (HS) USB 2.0 3:1 Multiplexer (MUX). It is optimized for switching among three high-speed (480Mbps) sources or any combination of high-speed and full-speed (12Mbps) USB sources, such as an application processor, to one USB 2.0 connector.

The FSUSB63 has a break-before-make time to force reenumeration by the host when sw itching betw een different HS USB 2.0 controllers and thus requires minimal software changes.

The FSUSB63 is compliant with the requirements of USB 2.0 and features extremely low on capacitance (Con). The wide bandw idth exceeds the requirement to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to-channel crosstalk also minimizes interference.

Typical Application

Figure 1. Analog Symbol

Pin Configuration

Figure 2. Pin Assignments (Top Through View)

Pin Descriptions

Pin \#	Name	De scription
1	D+	USB 2.0 High Speed or Full Speed Data BusD+
2	D-	USB 2.0 High Speed or Full Speed Data Bus D-
3	GND	Ground
4	SEL[0]	Path Selection Control Inputs (see functional table below)
5	HSD1-	Multiplexed First Source Path for D-
6	HSD1+	Multiplexed First Source Path for D+
7	HSD2-	Multiplexed Second Source Path for D-
8	HSD2+	Multiplexed Second Source Path for D+
9	HSD3-	Multiplexed Third Source Path for D-
10	HSD3+	Multiplexed Third Source Path for D+
11	SEL[1]	Path Selection Control Inputs (see functional table below)
12	V $_{\text {cc }}$	Supply Voltage

Functional Table

Mode	SEL[1]	SEL[0]	Function
Sleep Mode	0	0	D+, D- Switch PathsOpen
USB Port 1	0	1	D+=HSD1+, D-=HSD1-
USB Port 2	1	0	D+=HSD2+, D-=HSD2-
USB Port 3	1	1	D+=HSD3+, D-=HSD3-

Eye Compliance

Figure 3. USB 2.0 HS-USB Eye Compliance Pass Through (without Switch)

Figure 4. USB 2.0 HS-USB Eye Compliance with Switch

Notes:

1. Figure 3 indicates the HS-USB eye compliance of the source across a characterization board proir to the implementation of the sw tich.
2. Figure 4 show s the total impact the sw ich has on HS-USB eye compliance w hen compared to Figure 3

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$V_{\text {cc }}$	Supply Voltage		-0.50	5.25	V
$\mathrm{V}_{\text {CNTRL }}$	DC Input Voltage (SEL[1:0]) ${ }^{(3)}$		-0.5	V Cc	V
V ${ }_{\text {SW }}$	DC Sw itch VO Voltage ${ }^{(5)}$		-0.50	5.25	V
1 IK	DC Input Diode Current		-50		mA
lout	DC Sw itch Current			50	mA
TSTG	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity Level (JEDEC J-STD-020A)			1	Level
ESD	IEC61000-4-2 System on USB Connector Pins D+ \& D-	Air Gap	15.0		kV
		Contact	8.0		
	Human Body Model, JEDEC: JESD22-A114	Pow er to GND	16.0		
		VO to GND	5.0		
		All Pins	5.0		
	Charged Device Model, JEDEC: JESD22-C101		1.5		

Note:

3. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	2.7	4.4	V
$\mathrm{~V}_{\text {CNTRL }}{ }^{(4)}$	Control Input Voltage (SEL[1:0])	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Sw itch VO Voltage	-0.5	4.3	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Note:

4. The control input must be held HIGH or LOW and it must not float.

DC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbol	Parameter	Conditions	Vcc (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{l}_{\mathrm{in}}=-18 \mathrm{~mA}$	2.7			-1.2	V
$\mathrm{V}_{\text {IH }}$	Input Voltage High	SEL[1], SEL[0] Inputs	2.7 to 4.3	1.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low	SEL[1], SEL[0] Inputs	2.7 to 4.3			0.35	V
I_{N}	Control Input Leakage	All Combinations of SEL[1] \& SEL[0] in the Truth Table (LOW=OV \& HIGH=V ${ }_{c c}$)	4.3			1	$\mu \mathrm{A}$
l oz	Off-State Leakage	$\begin{aligned} & 0 \leq \square \mathrm{D}_{\mathrm{n}}, \mathrm{HSD}_{\mathrm{n}}, \mathrm{HSD}_{\mathrm{n}}, \\ & \mathrm{HSD}_{\mathrm{n}} \leq \square 3.6 \mathrm{~V} \end{aligned}$	4.3	-2		2	$\mu \mathrm{A}$
Ioff	Power-Off Leakage Current (All I/O Ports)	$\mathrm{V}_{\mathrm{sw}}=0 \mathrm{~V} \text { to } 4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0 \mathrm{~V},$ Figure 7	0	-2		2	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}{ }^{(5)}$	HS Switch On Resistance	$\mathrm{V}_{\text {Sw }}=0.4 \mathrm{~V}, \mathrm{I}_{\text {ON }}=-8 \mathrm{~mA}$, Figure 6	3.0		6.0	7.8	Ω
$\Delta \mathrm{R}_{\text {on }}$	HS Delta R ${ }_{\text {on }}{ }^{(6)}$	$\mathrm{V}_{\text {sw }}=0.4 \mathrm{~V}, \mathrm{I}_{\text {on }}=-8 \mathrm{~mA}$	3.0		0.50		Ω
$\mathrm{I}_{\text {çsLP }}$	Sleep Mode Supply Current	SEL[1]=SEL[0]=0	3.6			1	$\mu \mathrm{A}$
$I_{\text {ccact }}$	Active Mode Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CNTRL}}=0 \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{l}_{\text {out }}=0 \end{aligned}$	2.7		7.5	15.0	$\mu \mathrm{A}$
			3.6		8.5	16.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {çt }}$	Increase in Icc Current per Control Input and $V_{c c}$	$\mathrm{V}_{\text {CNTRL }}=1.8 \mathrm{~V}$	3.6		1.5	4.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CNTRL }}=1.2 \mathrm{~V}$	3.6		3.0	5.0	$\mu \mathrm{A}$

Notes:

5. Measured by the voltage drop betw een $H_{S} D_{n}$ and D_{n} pins at the indicated current through the switch.

On resistance is determined by the low er of the voltage on the two (HSD ${ }_{n}$ or D_{n} ports).
6. Guaranteed by characterization.

AC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherw ise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
ton	Turn-On Time when Switching from One USB Path (or Disabled i.e. SEL=00) to Another USB Path	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{sw}}=0.8 \mathrm{~V} \\ & \text { Figure 8, Figure 9 } \end{aligned}$	3.0 to 3.6	126		400	$\mu \mathrm{s}$
toff	Turn-Off Time SEL $\neq 00$ (Any of the Three USB Paths Active) to SEL=00 (Disabled)	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V} \text { Sw }=0.8 \mathrm{~V} \\ \text { Figure 8, Figure } 9 \end{array}$	3.0 to 3.6			45	ns
$t_{\text {PD }}$	Propagation Delay ${ }^{(7)}$	$\begin{aligned} & \begin{array}{l} \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ \text { Figure 8, Figure } 10 \end{array} \end{aligned}$	3.3		0.25		ns
Іввм	Break-Before-Make Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\text {sww }}=\mathrm{V}_{\text {sww }}=0.8 \mathrm{~V}, \\ & \text { Figure 12 } \end{aligned}$	3.0 to 3.6	126		400	$\mu \mathrm{s}$
$\mathrm{O}_{\text {IRR }}$	Off Isolation ${ }^{(7)}$	$\begin{aligned} & \begin{array}{l} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz} \\ \text { Figure } 14 \end{array} \end{aligned}$	3.0 to 3.6		-42		dB
Xtalk	Non-Adjacent Channel Crosstalk ${ }^{(7)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz} \\ & \text { Figure 15 } \end{aligned}$	3.0 to 3.6		-33		dB
BW	-3 db Bandwidth ${ }^{(7)}$	$\begin{aligned} & \begin{array}{l} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \\ \text { Figure } 13 \end{array} \end{aligned}$	3.0 to 3.6		830		MHz
		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ Figure 13	3.0 to 3.6		510		MHz

Note:

7. Guaranteed by characterization.

USB High-Speed Related AC Electrical Characteristics

Symbol	Parameter	Conditions	Vcc (V)	TA $=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
tsk(P)	Pulse Skew ${ }^{(8)}$	$\mathrm{V}_{\mathrm{SW}}=0.2 \mathrm{Vdiff}_{\mathrm{pP}}$, Figure 11, $\mathrm{C}=5 \mathrm{pF}$	3.0 to 3.6		10		ps
tsk(1)	Skew Betw een Differential Signals within a Pair ${ }^{8)}$	$\mathrm{V}_{\mathrm{SW}}=0.2 \mathrm{~V}^{\text {diff }}{ }_{\mathrm{PP}}$, Figure 11, CL=5pF	3.0 to 3.6		10		ps

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=-40{ }^{\circ} \mathrm{C}$ to +85*${ }^{\circ} \mathrm{C}$			Units
			Min.	Typ.	Max.	
Cin	SEL[1:0] Input Capacitance ${ }^{(8)}$	$\mathrm{Vcc}=0 \mathrm{~V}$		3		pF
Con	D+/D- On Capacitance ${ }^{(8)}$	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$, Any of the Three Switch Paths Enabled, $f=1 \mathrm{MHz}$, Figure 17		6		
		$V_{C c}=3.3 \mathrm{~V}$, Any of the Three Sw itch Paths Enabled, $f=240 \mathrm{MHz}$		5		
CofF	HSD1 $_{n}, \mathrm{HSD}_{\mathrm{n}} \mathrm{n}, \mathrm{HSD}_{\mathrm{n}}$ Off Capacitance $^{(8)}$	$\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$ or ($\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$ and SEL[1]=SEL[0]=0V) Figure 16		2		

Notes:

8. Guaranteed by characterization.
9. Effective capacitance measured on a netw ork analyzer.

Reference Schematic

Figure 5. Reference Schematic

Test Diagrams

Figure 6. On Resistance

R_{L}, R_{S}, and C_{L} are functions of the application environment (see AC Tables for specific values) C_{L} includes test fixture and stray capacitance.

Figure 8. AC Test Circuit Load

Figure 10. Propagation Delay ($\mathrm{t}_{\mathrm{R}} \mathrm{t}_{\mathrm{F}}-500 \mathrm{ps}$)

**Each switch port is tested separately

Figure 7. Off Leakage

Figure 9. Turn-On / Turn-Off Waveforms

Figure 11. Skew Test Waveforms

Test Diagrams (Continued)

Figure 12. Break-Before-Make Interval Timing
 environment (see AC Tables for specific values).

Figure 13. Bandwidth

Off isolation $=20 \log \left(\mathrm{~V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
Figure 14. Channel Off Isolation

Figure 15. Non-Adjacent Channel-to-Channel Crosstalk

Figure 16. Channel Off Capacitance

Physical Dimensions

NOTES:
A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.
E. DRAWING FILENAME: MKT-UMLP12Arev4.

Figure 18. 12-Lead, Ultrathin Molded Leadless Package (UMLP)
Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSUSB63UMX	KG	-40 to $+85^{\circ} \mathrm{C}$	12 -Lead, Quad, Ultrathin Molded Leadless Package (UMLP), $1.8 \mathrm{~mm} \times 1.8 \mathrm{~mm} \times 0.55 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify orobtain the most recent revision. Package specifications do notexpand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at ww.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. Amer ic an Technical Support: 800-282-9855 Toll Free USA/Canada.
Eur ope, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semic onductor Website: www.onsemicom
Or der Literature: http://www.onsemi.com/orderit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NLAS7222AMTR2G NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI3USB31532ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FSUSB42MUX FT234XD-R PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4717ETB+T MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4899EETE+ MAX4906EFELB+T MAX4907FELA+T MAX4907ELA+T MAX4983EEVB+T MAX4984EEVB+T MAX4899AEETE+T MAX14618ETA+T

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

