

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

January 20177

FUSB252 Type-C CC with High Speed Digital (HSD) Port Protection Switch

Features

- Fully Type-C Port Protection
- Supports USB Type-CTM Specification 1.2
- Vcc 0 V- 5.5 V
- 20 V DC Protection on V_{CC}
- 16 V DC protection on HSD Port
- V_{DD} Operating Range, 2.7 V- 5.5 V
- Current Capability: 1 A
- CC R_{ON}: 0.3 Ω Typical
- HSD R_{ON}: 5 Ω Typical
- Wide -3 db Bandwidth: 1 GHz
- Low Power Operation: I_{CC} = 9 μA Typical
- Dead Battery Support (UFP Support when No Power Applied)
- CC Over-Voltage Protection: Typical = 5.6 V

Description

The FUSB252 is an integrated port protection switch for USB Type-C applications. This product will protect HSD+/- and CCx pins when stressed with voltages up to 20 V. Over-Voltage Protection (OVP) at 5.8 V typical will protect the system for Electrical Overstress (EOS) damage. With a fully integrated USB 2.0 switch for HSD+/-, this product can be easily integrated into existing solutions. The HSD switches can pass USB 2.0 signals with bandwidth 1 GHz to maintain signal integrity and eye compliance.

The CC switches have very low R_{ON} of $0.3\,\Omega$ to minimize signal attenuation. The FUSB252 also provides Dead Battery support per the Type-C specification Additional features include Under-Voltage Lockout (UVLO) and thermal shutdown.

Applications

- Smartphones
- Tablets
- Laptops

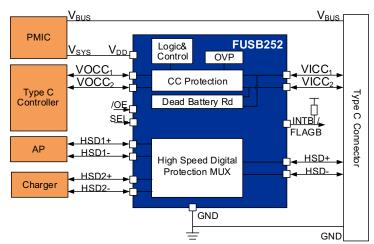


Figure 1. Typical Application

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method	Top Mark
FUSB252UMX	-40 to 85°C	16-Lead Ultrathin Molded Leadless Package (UMLP) 1.8 x 2.6 mm	Tape and Reel	UZ

USB Type-CTM is a trademark of USB Implementers Forum, Inc.

Block Diagram

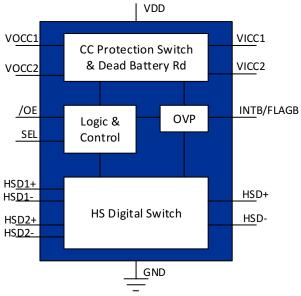


Figure 2. Block Diagram

Reference Schematic

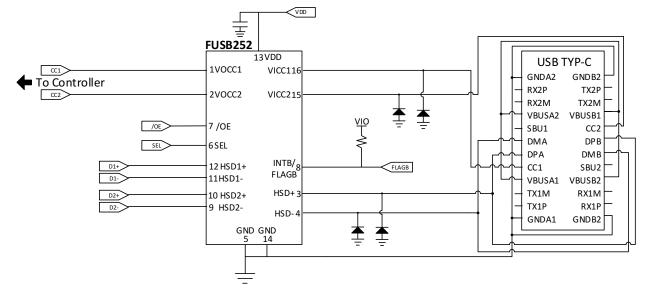
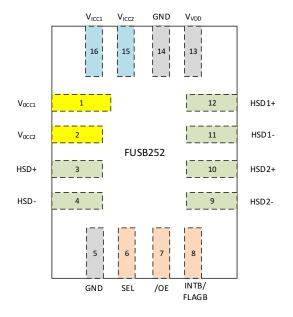



Figure 3. Reference Schematic

Pin Configuration

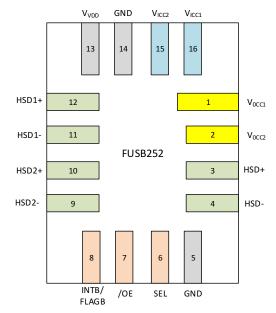


Figure 4. Pin Assignment (Top Through View)

Figure 5. Pin Assignment (Bottom View)

Pin Descriptions

Bump	Name	Туре	Description
Power Interfa	·		
13	VDD	Power	Power
5,14	GND	Ground	Ground
USB Type-C (Connector Inter	rface Input	
15, 16	VICC1,2	Input	Type C CC Interface OVP protection input, Connect to connector
USB Type-C (Connector Inter	rface Output	
1, 2	VOCC1,2	Output	Type C CC Interface output. Connect to controller
USB High Spe	eed Data Interfa	ace	
3	HSD+	I/O	Common High Speed Digital / USB Data Bus
4	HSD-	I/O	Common High Speed Digital / USB Data Bus
12	HSD1+	I/O	Multiplexed Source Input 1
11	HSD1-	I/O	Multiplexed Source Input 1
10	HSD2+	I/O	Multiplexed Source Input 2
9	HSD2-	I/O	Multiplexed Source Input 2
Signal Interfa	ce		
7	/OE	I/O	Switch Enable
6	SEL	I/O	Switch Select
8	INTB/FLAGB	Output	OVP Interrupt Flag

Table 1. CC Switch Truth Table Configuration

V_{DD}	V _{ICC} Voltage	CC Switch Configuration
0 V LIVI O (Not Volid)	0 V – 5.8 V	OFF Dead Battery Rd Inserted
0 V - UVLO (Not Valid)	5.8 V to 20 V	OFF Dead Battery Rd Inserted
2.7 V – 5.5 V (Valid)	0 V – 5.8 V	On
2.7 V = 5.5 V (Valid)	5.8 V to 20 V	OFF (OVP)

Table 2. Device Truth Table Configuration

/OE	SEL	VDD	HSD+/HSD-	СС
1	0	Not Valid	X (Open/High-Z)	Dead Battery
0	0	Not Valid	X (Open/High-Z)	Dead Battery
1	X	Valid	X (Open/High-Z)	On
0	0	Valid	HSD1+/HSD1-	On
0	1	Valid	HSD2+/HSD2-	On

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
V_{VDD}	Supply Voltage from V _{DD}			-0.5	12.0	V
V _{VICC}	V _{ICCx} , to GND			-0.5	24	V
V_{SW}	V _{HSD±} , to GND			-5	16	V
V _{OCC} , V _{SW}	V _{OCCx} V _{HSDx+/-} to GND			-0.5	6	V
V _{CONTROL}	DC Input Voltage (S, /OE)			-0.5	V_{VDD}	V
I _{CCSW}	DC CC Switch Current				1.25	Α
I _{USBSW}	DC Output Current				100	mA
I _{IK}	DC Input Diode Current			-50		mA
T _{STORAGE}	Storage Temperature Range			-65	+150	С
T_J	Maximum Junction Temperature		+150	С		
T_L	Lead Temperature (Soldering, 10 seconds)		+260	С		
	IEC 61000-4-2 System ESD	Connector Pins	Air Gap	15		kV
	TEC 01000-4-2 System ESD	$(V_{VDD}, V_{ICCx}, V_{HSD\pm},)$	Contact	8		KV
	IEC 61000-4-5 Surge ESD	V _{ICCx} to GND		-24	24	V
	1EC 01000-4-3 Surge E3D	V _{HSD±} to GND		-16	16	V
505		Power to GND				
ESD	Human Body Model, JEDEC JESD22-A114	External Pins to GNI (V _{HSD±} , V _{ICCx}))	4		
		System Side Pin (V _{HSDx±} , V _{OCCx} , S, /O FLAGB)	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5		kV	
	Charged Device Model, JEDEC LESD22-C101	All Pins		1		

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. ON does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{VDD}	Supply Voltage	2.7	4.2	5.5	V
V _{ICC}	Type C Input Voltage	0		5.5	V
Vocc	Type C Output Voltage	0		5.5	V
Iccsw	Maximum CC Switch Current			1	Α
V_{CNTRL}	Control Input Voltage (SEL, /OE)	-0.5		V_{VDD}	V
V _{SW}	HSD/USB Switch I/O Voltage	-0.5		4.5	V
T _A	Operating Temperature	-40		+85	С

DC Electrical Characteristics

Unless otherwise specified: Recommended T_A and T_J temperature ranges. All typical values are at T_A =25°C and V_{DD} =4.2 V unless otherwise specified.

Symbol	Parameter	V _{DD} (V)	Conditions		-40 to + 40 to +1		Unit
		. ,		Min.	Тур.	Max.	
Basic Opera	ation Device			1	I		I
	Oning a series Comment	074-55	/OE = L, I _{OUT} =0		9		
I _{CC}	Quiescent Supply Current	2.7 to 5.5	/OE = H I _{OUT} =0		9		μA
I _{OFF}	Power-Off Leakage Current	0			3		μA
Basic Opera	ation CC switch				1	1	
I _{SD(DB)}	Dead Battery Supply Current	0 to UVLO	Dead Battery State Supply Current		15		uA
R _{ON}	CC Path On Resistance	2.7 to 5.5	I _{OUT} = 200 mA		350	480	mΩ
Vov. TRIP	V _{OV_TRIP} Input OVP Lockout		V _{ICC} Rising		5.65	6.20	V
V OV_IRIP	·	2.7 to 5.5	V _{ICC} Falling		5.3		, v
V _{OV_HYS}	Input OVP Hysteresis	2.7 to 5.5			0.35		V
V _{UVLO}	Under-Voltage Lockout	2.7 to 5.5	V _{DD} Rising		2.55	2.70	V
			V _{DD} Falling		2.5		
	Thermal Shutdown ⁽¹⁾		Shutdown Threshold		150		
TSD			Return from Shutdown		130		°C
			Hysteresis		20		
Rd	Dead Battery Pull-Down	0 to	Dead Battery Resistance	4.08	5.10	6.12	kΩ
T C	Resistance	UVLO	Voltage on Pin	0.25		2.6	V
Basic Opera	ation HSD Switch						
V _{OV_TRIP}	Input OVP Lockout	2.7 to 5.5	V _{HSD±} Rising		4.4	5.0	V
V OV_IIVIF	Input ovi Lookout	2.7 10 0.0	V _{HSD±} Falling		4.1		•
V _{OV_HYS}	Input OVP Hysteresis	2.7 to 5.5			0.3		V
V _{UV_TRIP}	Input Under-Voltage Lockout	2.7 to 5.5			-1.2		V
V _{IH}	Input Voltage High	2.7 to 5.5		1.3			V
V _{IL}	Input Voltage Low	2.7 to 5.5				0.5	V
I _{IN}	Control Input Leakage	2.7 to 5.5	V _{SW} = 0 to V _{DD}		0.1		μΑ
loz	Off State Leakage	4.2	0≤HSDn ≤3.6 V		2		μA
·UZ	I _{OZ} Off State Leakage		0≤HSD1n _± , HSD2n _± ≤3.6 V		100		nA
R _{ON}	HS Switch On Resistance	4.2	V _{SW} = 0.4 V, I _{ON} = -8 mA		5		Ω
ΔR_{ON}	HS Delta R _{ON}	4.2	V _{SW} = 0.4 V, I _{ON} = -8 mA		0.1		Ω

Note:

1. Guaranteed by characterization, not production tested

AC Electrical Characteristics

Unless otherwise specified: Recommended T_A and T_J temperature ranges. All typical values are at T_A =25°C and V_{DD} =3.8 V unless otherwise specified.

Symbol	Parameter	V _{DD} (V)	Conditions		-40 to +1		Unit
				Min.	Тур.	Max.	
CC Switch	Timing Parameter			.	•		•
t _{OVP}	Response Time ⁽²⁾	2.7 to 5.5	I _{OUT} = 0.2 A, C _L = 200 pF, V _{ICCx} 5 V to 6 V		0.5	1.0	μs
t _{ON}	Turn-On Time		VDD Rising 2 V to 3 V		25		ms
T _{MBB}	Make-Before-Break	2.7 to 5.5	VDD Rising 2 V to 3 V		600		ns
CC Switch	Capacitance						
Con	Switch Path On Capacitance ⁽²⁾	2.7 to 5.5			100		pF
CC Switch	Bandwidth						
BW	PD Traffic Bandwidth ⁽²⁾	2.7 to 5.5	$R_L = 50 \Omega$, $C_L = 200 pF$		25		MHz
HSD Switc	h Timing Parameter						
t _{OVP}	Response Time ⁽²⁾	2.7 to 5.5	$I_{OUT} = 0.2 \text{ A}, V_{D\pm} 4 \text{ V to 5 V}$		0.5	1.0	μs
t _{ON}	Turn-On Time, /OE to Output ⁽²⁾	2.7 to 5.5	$R_L = 50 \Omega, C_L = 5 pF,$ $V_{SW} = 0.8 V$		25		ms
t _{OFF}	Turn-Off Time, /OE to Output ⁽²⁾	2.7 to 5.5	$R_L = 50 \Omega, C_L = 5 pF,$ $V_{SW} = 0.8 V$		100	400	ns
t _{PD}	Propagation Delay ⁽²⁾	2.7 to 5.5	$R_L = 50 \Omega, C_L = 5 pF,$		0.25		ns
Тввм	Break-Before-Make ⁽²⁾	2.7 to 5.5	$R_L = 50 \Omega$, $C_L = 5 pF$, $V_{SWx} = 0.8 V SEL = H <-> L$		100		μs
O _{IRR}	Off Isolation	2.7 to 5.5	R _L = 50 Ω, f = 240 MHZ		-25		dB
Xtalk	Non-Adjacent Channel Crosstalk	2.7 to 5.5	R _L = 50 Ω, f = 240 MHZ		-40		dB
HSD Switc	h Capacitance						
C _{IN}	Control Pin Input Capacitance ⁽²⁾	0			1.5		
C _{ON}	HSD+/HSD- On Capacitance ⁽²⁾	2.7 to 5.5	/OE = L, f = 240 MHz,		4		pF
C _{OFF}	HSD1 _x , HSD2 _x Off Capacitance ⁽²⁾	2.7 to 5.5	/OE = H		2.5		
USB Switc	h Bandwidth						
BW	-3 db Bandwidth ⁽²⁾	2.7 to 5.5	$R_L = 50 \Omega, C_L = 0 pF$		1400		MHz
DVV	-5 ab Danawiath	2.7 to 5.5	$R_L = 50 \Omega, C_L = 5 pF$		560		IVITIZ
USB High-	Speed-Related						
t _{SK(P)}	Skew of Opposite Transitions of the Same Output ⁽²⁾		$R_L = 50 \Omega$, $C_L = 5pF$		25		ps
t₁	Total Jitter ⁽²⁾		$R_L = 50 \Omega$, $C_L = 5 pF$, $t_R = t_F = 500 ps (10-90\%) at$ $480 \text{ Mbps (PRBS=2}^{15} - 1)$		200		ps

Note

2. Guaranteed by characterization, not production tested.

Operation and Application Description

Out of Spec Surge/Spike Voltage due to Hot Plug

The FUSB252 protects end systems against 20 V DC on the CC pin, in cases where the FUSB252 is tested to mimic a hot plug event, a fully charged cable connected to a power supply set to 20 V is used to zap the VICC pins of the device. In these cases, the inductance of the cable causes voltage spikes that are higher than the absolute maximum ratings of the of the VICC pins. These voltages can cause damage to the VOCC pins. This scenario does not occur in normal usage. The Type-C specification prevents the plug from having 20V on VBUS from a PD source prior to a PD contract being completed. When the 20 V potential is on VBUS and shorted to the CC pin, it causes a detach and the voltage spikes are less likely to occur. The following reference circuit is required when the application calls for additional protection to protect against such event as hot plug.

Application Specific Schematic

- Place a 5 V to 6 V rated Zener TVS diode such as (CZRF52C5V6 or CD1005-Z5V1) on the VOCC pin, and a 5 Ω resistor to device ground to prevent the FUSB252 from being damaged during these tests. With this additional protection if is also important to select the right external VICC IEC TVS for the best overall performance.
- Without the additional protection the device by itself can withstand up to 9 V under the same hot plug condition

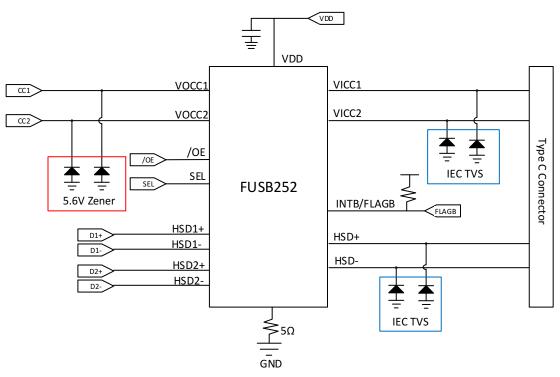


Figure 6. Reference Schematic

Over-Voltage Protection

When over-voltage event is detected, device will activate OVP to shutdown the switch within t_{OVP} , as well as signal the FLAGB to indicate there is OV event to the system.

Fault Reporting

Upon the detection of an over-voltage event, the INTB/FLAGB signals the fault by activating LOW.

Type-C Solution Reference

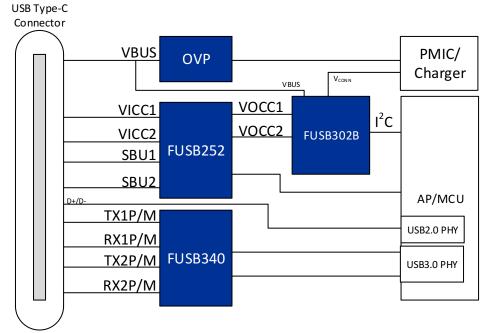


Figure 7. Example of Type-C Solution Reference (SBU)

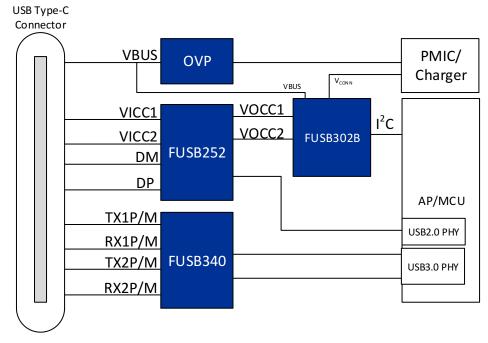


Figure 8. Example of Type-C Solution Reference (USB)

Test Diagrams

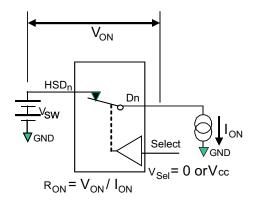
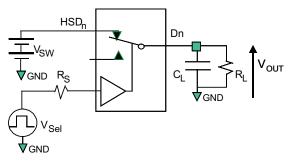



Figure 9. On Resistance

 R_L , R_S , and C_L are functions of the application environment (see AC Tables for specific values) C_L includes test fixture and stray capacitance.

Figure 11. AC Test Circuit Load

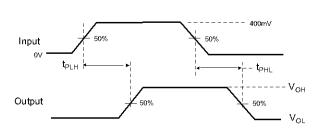
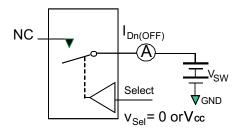



Figure 13. Propagation Delay (t_Rt_F - 500 ps)

**Each switch port is tested separately

Figure 10. Off Leakage

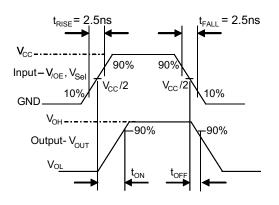


Figure 12. Turn-On / Turn-Off Waveforms

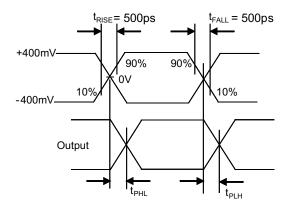


Figure 14. Intra-Pair Skew Test t_{SK(P)}

Test Diagrams (Continued)

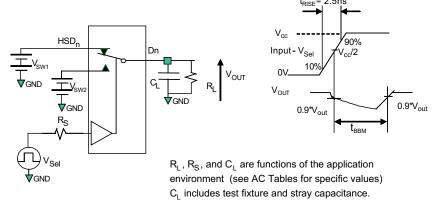
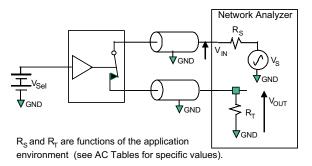



Figure 15. Break-Before-Make Interval Timing

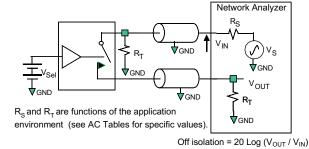


Figure 16. Bandwidth

Figure 17. Channel Off Isolation

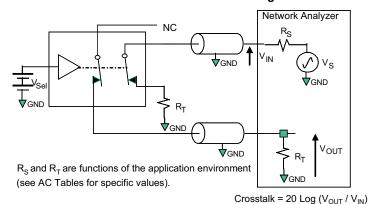


Figure 18. Non-Adjacent Channel-to-Channel Crosstalk

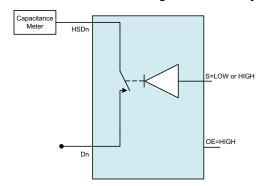


Figure 19. Channel Off Capacitance

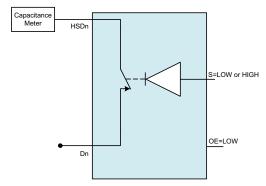
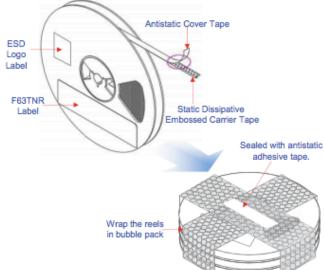



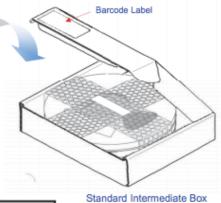
Figure 20. Channel On Capacitance

Package Information

UMLP16A Packing Configuration: Figure 1.0

Pin 1

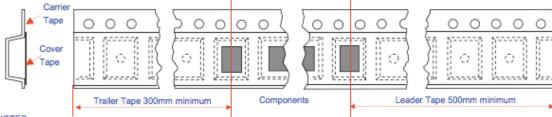
Unit Orientation


Packaging Description:

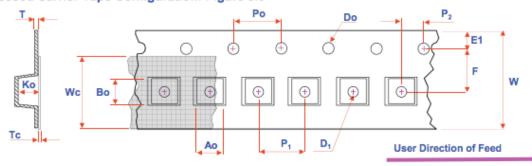
UMLP16 pins products are classified under Moisture Sensitive Level 1 at 260°C peak package body temperature.

The carrier tape is made from dissipative polystyrene or polycarbonate resin. The cover tape is a multilayer film primarily composed of polyester film, adhesive layer, heat activated sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 5000 units per 178 mm diameter reel. Up to three reels are packed in each intermediate box. The reels is made of polystyrene plastic (anti-static coated or intrinsic).

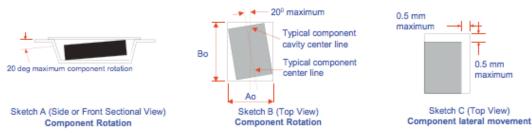
These full reels are individually barcode labeled and placed inside a pizza box made of recyclable corrugated brown paper with a Fairchild logo printing. These pizza boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped.


nformation				
Standard (no flow code)				
TNR				
5000				
7" Dia				
193X183X80				
15,000				

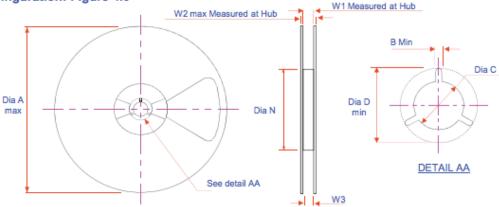
F63TNR Label Sample



UMLP16A Tape Leader and Trailer Configuration: Figure 2.0


- NOTES
 - A : ALL DIMENSION ARE IN MILLIMETERS UNLESS
 - OTHERWISE SPECIFIED
 - B: DRAWING FILE NAME: PKG-UMLP16AREV2

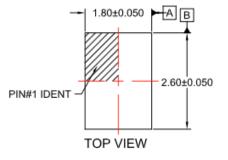
Embossed Carrier Tape Configuration: Figure 3.0

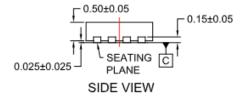


	Dimensions are in millimeters													
Package	Ao ±0.05	Bo ±0.05	Do ±0.10	D1 Min	E1 ±0.10	F ±0.10	Ko ±0.05	P1 TYP	Po TYP	P2 ±0.05	T TYP	Tc ±0.005	W ±0.30	Wc TYP
UMLP1.8x2.6	2.00	2.80	1.50	0.6	1.75	3.5	0.70	4.0	4.0	2.0	0.254	0.06	8.0	5.3

Notes: Ao, Bo, and Ko dimensions are determined with respect to the EIA /Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Reel Configuration: Figure 4.0

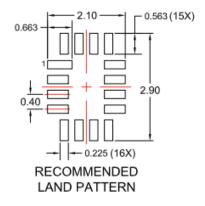


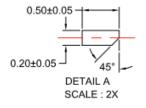

	Dimensions are in millimeters												
Tape Width	Reel Option	Dia A max	Dia B min	Dia C +0.5/-0.2	Dia D min	Dim N min	Dim W1 +2/-0	Dim W2 Max	Dim W3 (LSL-USL)				
8 mm	7" Dia	178.0	1.5	13.0	20.2	55.0	8.4	14.4	7.9~10.9				

NOTES:

- A: ALL DIMENSION ARE IN MILLIMETERS UNLESS OTHERWISE SPECIFIED
- B : DRAWING FILE NAME : PKG-UMLP16AREV2
- C: PLASTIC REEL W1 DIMENSION CONTROL LIMIT OF: 8MM REEL=±1.0MM AND 12MM REEL AND ABOVE =±1.5MM

Physical Dimensions





NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-UMLP16ArevF.
- F. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

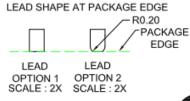
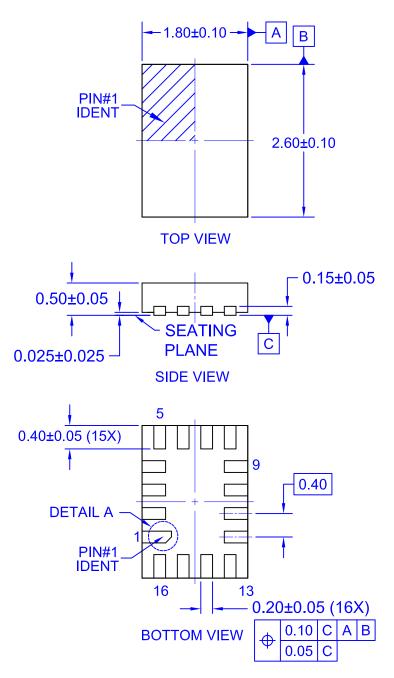


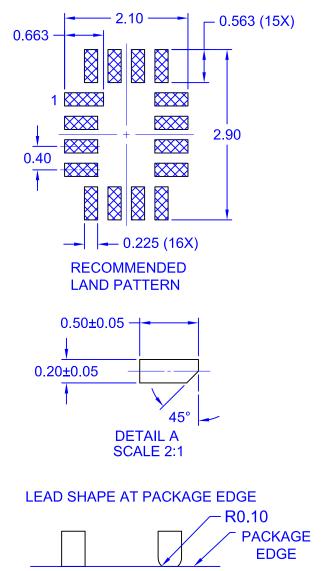
Figure 21. 16 Lead, UMLP, 0.55 mm x 1.8 mm x 2.6 mm

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:


Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free


Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

LEAD

OPTION 2

SCALE 2:1

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- D DRAWING FILENAME: MKT-UMLP16ArevG.
- E. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

ON Semiconductor

LEAD

OPTION 1

SCALE 2:1

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for USB Switch ICs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NLAS7213MUTBG FSA221UMX FSUSB31UMX FSA806UMX NLAS7222AMTR2G NL3S2223MUTBG TC7USB3212WBG(ELAH PI3USB31531ZLCEX PI3USB31532ZLCEX PI5USB31213XEAEX BD91N01NUX-E2 MP5030DGQH-Z NL3S22AHMUTAG NL3S22UHMUTAG FSA9280AUMX NLAS7242MUTBG HD3SS460RHRT TPS2549IRTERQ1 PI2USB4122ZHEX TS5USBC402IYFPT NS5S1153MUTAG FSUSB11MTCX FSUSB42MUX PI3USB102GZLEX P6KE110A SMAJ200A SMAJ70CA SMAJ11A SMAJ140CA SMAJ14A SMAJ160CA SMAJ250A SMAJ51CA SMAJ5.0CA 30KP400CA 1SMB5.0AT3G MAX4717ETB+T MAX4989ETD+T MAX4717EBCT MAX4717EUB+ MAX4906ELB+T MAX4899ETE+ MAX4906EFELB+T MAX4907FELA+T MAX4907ELA+T MAX4983EEVB+T MAX4984EEVB+T MAX4899AEETE+T MAX14618ETA+T MAX14651ETA+T