FUSB3301

USB Type-C Controller for Mobile Chargers and Power Adapters

Description

The FUSB3301 is an autonomous Source only Type-C controller optimized for mobile chargers and power adapters. It broadcasts the available current of the charger over $\mathrm{CC} 1 / \mathrm{CC} 2$ using the USB Type-C standard and prevents VBUS from being asserted until a valid connection has been verified. It can be used for up to 15 W charging using Type-C protocols. The FUSB3301 has very low standby power consumption and is packaged in a 0.5 mm pitch MLP to accommodate power adapter PCBs.

Features

- Fully Autonomous Type-C Controller
- Supports Type-C Version 1.2
- Fixed Source Mode
- Low Standby Power: $\mathrm{I}_{\mathrm{CC}}=5 \mu \mathrm{~A}$ (Typical)
- VBUS Switch Control
- Advertises Three Standard Type-C VBUS Current Levels ($900 \mathrm{~mA}, 1.5 \mathrm{~A}, 3.0 \mathrm{~A}$)
- 2 kV HBM ESD Protection
- 10 Lead MLP Package
- V_{DD} Operating Range, $3.0 \mathrm{~V}-5.5 \mathrm{~V}$

Applications

- USB Type-C Power Ports
- Mobile Chargers
- Power Adapters
- AC-DC Adapters

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

WDFN
10 LEAD
CASE 511DM

MARKING DIAGRAM

NZ = Specific Device Marking

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

FUSB3301

ORDERING INFORMATION

Part Number	Top Mark	Operating Temperature Range	Package	Packing Method
FUSB3301MPX	NZ	-40 to $85^{\circ} \mathrm{C}$	10 -Lead, MLP, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$	Tape and Reel

Figure 1. Block Diagram

Figure 2. Typical Application

Table 1. PIN DESCRIPTIONS

Pin \#	Name	Type	Description
1	CC1	Input/Output	Type-C Configuration Channel
2	NC1 (Note 1)	NC	No Connect
3	NC2 (Note 1)	NC	No Connect
4	NC3 (Note 1)	NC	No Connect
5	HOST1	Input	Host Current Select Pin with Internal Pull-up
6	HOST2	Input	Host Current Select Pin with Internal Pull-up
7	SW	Output	Open Drain output to control the VBUS load switch
8	GND	Power	Ground
9	VDD	Power	Power Supply
10	CC2	Input/Output	Type-C Configuration Channel

1. No connect pins can float or can be tied to ground.

FUSB3301

Table 2. CONNECTION STATE TABLE

CC1	CC2	SW	Description
NC	NC	HiZ	No Attach
Rd	NC	L	Attach to UFP (Sink)
NC	Rd	L	Attach to UFP (Sink)
Rd	Rd	HiZ	No Attach
Ra	NC	HiZ	No Attach
NC	Ra	HiZ	No Attach
Ra	Ra	HiZ	No Attach

Host Current

Table 3. HOST INPUT TRUTH TABLE

HOST2	HOST1	CC Current ($\mu \mathrm{A}$)	Host Current (A)
GND / LOW	GND / LOW	330	3.0
GND / LOW	FLOAT / HIGH	180	1.5
FLOAT / HIGH	GND / LOW	180	1.5
FLOAT / HIGH	FLOAT / HIGH	80	0.9

Figure 3. Source Attach Flowchart

FUSB3301

Table 4. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Min	Max	Unit
V_{DD}	Supply Voltage			-0.5	6.0	V
$V_{\text {CCX }}$	CC pins when configured as HOST			-0.5	6.0	V
TStorage	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature				+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)				+260	${ }^{\circ} \mathrm{C}$
ESD	IEC 61000-4-2 System ESD	Connector Pins (VBUS, CC1 \& CC2)	Air Gap	15		kV
			Contact	8		
	Human Body Model, JEDEC JESD22-A114	Connector Pins (VBUS, CC1 and CC2)		4		kV
		Others		2		
	Charged Device Model, JEDEC JESD22-C101	All Pins		1		kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
V_{DD}	Supply Voltage	3.0	5.0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature	-40		+125	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 6. DC AND TRANSIENT CHARACTERISTICS All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			Unit
		Min	Typ	Max	
I80_ccx	Source $80 \mu \mathrm{~A}$ CC Current (Default) HOST2=VDD, HOST1=VDD	64	80	96	$\mu \mathrm{A}$
$\mathrm{l}_{180 \text { _CCX }}$	Source $180 \mu \mathrm{~A}$ CC Current (1.5 A) HOST2=VDD, HOST1=GND or HOST2=GND, HOST1=VDD	166	180	194	$\mu \mathrm{A}$
I_{330} _ccx	Source $330 \mu \mathrm{~A}$ CC Current (3A) HOST2=GND, HOST1=GND	304	330	356	$\mu \mathrm{A}$
zOPEN	CC Resistance for Disabled State	126			$\mathrm{k} \Omega$
vRa-SRCdef	Ra Detection Threshold for CC Pin for Source for Default Current on VBUS	0.15	0.20	0.25	V
vRa-SRC1.5A	Ra Detection Threshold for CC pin for Source for 1.5 A Current on VBUS	0.35	0.40	0.45	V
vRa-SRC3A	Ra Detection Threshold for CC Pin for Source for 3 A Current on VBUS	0.75	0.80	0.85	V
vRd-SRCdef	Rd Detection Threshold for Source for Default Current (HOST2/1=VDD/VDD)	1.50	1.60	1.65	V
vRd-SRC1.5A	Rd detection threshold for Source for 1.5 A Current (HOST2/1=GND/VDD or VDD/GND)	1.50	1.60	1.65	V
vRd-SRC3A	Rd Detection Threshold for Source for 3 A Current (HOST2/1=GND/GND)	2.45	2.60	2.75	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 7. CURRENT CONSUMPTION

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			Unit
				Min	Typ	Max	
Istby	Unattached Source	Nothing attached, Host Pins = VDD, GND, Float.	3.0 to 5.5		5	20	$\mu \mathrm{A}$
lattach	Attach Current (Less Host Current)	Attached, Host Pins=VDD, GND, Float.	3.0 to 5.5		10	15	$\mu \mathrm{A}$

Table 8. TIMING PARAMETERS

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			Unit
		Min	Typ	Max	
tCCDebounce	Time from CC Voltage Detection until SW goes LOW	100	150	200	ms
tPDDebounce	Time from CC Voltage Not Detected until SW goes to High-Z	10	15	20	ms

Table 9. IO SPECIFICATIONS

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			Unit
				Min	Typ	Max	
$\mathrm{V}_{\text {OLSW }}$	SW Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	3.0 to 5.5			0.4	V
VILHOST	HOST1/2 Low-Level Input Voltage		3.0 to 5.5			$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {IHHOST }}$	HOST1/2 High-Level Input Voltage		3.0 to 5.5	$0.7 \mathrm{~V}_{\mathrm{DD}}$			V

DATE 31 AUG 2016

DOCUMENT NUMBER:	98AON13631G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WDFN10 3X3, 0.5P		PAGE 1 OF 1

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for USB Interface IC category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
CY7C69356-48LTXC USB3319C-GJ-TR USB3370B-EZK-TR CYPD2120-24LQXI CYPD2122-20FNXIT CYPD2122-24LQXIT LIF-
UC120-SWG36ITR50 UPD360-A/6HX CP2102NP1174GM CG8454AM DPO2039DABQ-13 CY7C68034-56LTXC TUSB213IRGYT TUSB213RGYT USB3503T-I/ML CY7C63310-SXC CY7C68013A-56LTXIT USB3316C-CP-TR USB3250-ABZJ FT220XS-R MAX3107ETG+ MAX14632EZK+T USB3300-EZK LAN9514-JZX CYPD2120-24LQXIT MAX3100CEE+T USB5826-I/KD USB5826/KD USB5906/KD USB5916/KD USB5926/KD TUSB215QRGYTQ1 TUSB522PRGER NB7NPQ701MMTTBG TUSB213RGYR USB5926-I/KD USB5906-I/KD USB4640I-HZH-03 CY7C63813-SXC CY7C63823-SXC CY7C64215-28PVXC CY7C68013A-128AXC CY7C68013A-56LTXI CY7C68013A-56PVXC CY7C68013A-56PVXI CYPD1120-40LQXI AP43771VDKZ-13 AP43771VFBZ-13 DIO32320MP10 HT42B534-2

