

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FXL4245

Low-Voltage, Dual-Supply, 8-Bit, Signal Translator with Configurable Voltage Supplies, Signal Levels, and 3-State Outputs

Features

- Bi-Directional Interface between Two Levels from 1.1 V to 3.6 V
- Fully Configurable, Inputs Track V_{Cc} Level
- Non-Preferential Power-up; Either Vcc May Be Powered-up First
- Outputs Remain in 3-State until Active V_{CC} Level is Reached
- Outputs Switch to 3-State if Either V_{CC} is at GND
- Power-Off Protection
- Control Inputs (T/R, $\overline{\mathrm{OE}}$) Levels are Referenced To $V_{\text {CCA }}$ Voltage
- Packaged in 24-Pin MLP
- ESD Protection Exceeds:
- 4 kV Human Body Model (per JESD22-A114 \& Mil Std 883e 3015.7)
- 8 kV Human Body Model I/O to GND (per JESD22-A114 \& Mil Std 883e 3015.7)
- 1 kV Charge Device Model (per ESD STM 5.3)
- 200 V Machine Model
(per JESD22-A115 \& ESD STM5.2)

Description

The FXL4245 is a configurable dual-voltage-supply translator designed for bi-directional voltage translation of signals between two voltage levels. The device allows translation between voltages as high as 3.6 V to as low as 1.1 V . The A port tracks the $\mathrm{V}_{\mathrm{CCA}}$ level and the B port tracks the $\mathrm{V}_{\text {CcB }}$ level. Both ports are designed to accept supply voltage levels from 1.1 V to 3.6 V . This allows for bi-directional voltage translation over a variety of voltage levels: 1.2 V, 1.5 V, $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V .

The device remains in 3-state until both $\mathrm{V}_{\mathrm{cc}} \mathrm{S}$ reach active levels, allowing either V_{CC} to be powered-up first. The device also contains power-down control circuits that place the device in 3-state if either V_{Cc} is removed.

The Transmit/Receive ($\mathrm{T} / \overline{\mathrm{R}}$) input determines the direction of data flow through the device. The OE input, when HIGH, disables both the A and B ports by placing them in a 3-state condition. The FXL4245 is designed with the control pins (T/R and OE) supplied by $\mathrm{V}_{\text {CCA }}$.

Ordering Information

Part Number	Package	Packing Method
FXL4245MPX	24-Pin Molded Leadless Package (MLP), JEDEC MO-220, 3.5 $\times 4.5 \mathrm{~mm}$	Tape and Reel

Pin Configuration

Figure 1. Pin Configuration (Top Through View)

Pin Definitions

Pin \#	Name	Description
1	$\mathrm{~V}_{\mathrm{CCA}}$	Side-A Power Supply
2	$\mathrm{~T} / \mathrm{R}$	Transmit / Receive Input
$3,4,5,6,7,8,9,10$	$\mathrm{~A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}, \mathrm{~A}_{6}, \mathrm{~A}_{7}$	Side-A Inputs or 3-State Outputs
$11,12,13$	GND	Ground
$14,15,16,17,18,19,20,21$	$\mathrm{~B}_{7}, \mathrm{~B}_{6}, \mathrm{~B}_{5}, \mathrm{~B}_{4}, \mathrm{~B}_{3}, \mathrm{~B}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{0}$	Side-B Inputs or 3-State Outputs
22	$\overline{\mathrm{OE}}$	Output Enable Input
23,24	$\mathrm{~V}_{\mathrm{CCB}}$	Side-B Power Supply
DAP	No Connect	No Connect

Truth Table

Inputs		Description
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathbf{R}}$	
LOW Voltage Level	LOW Voltage Level	Bus A Data to Bus B
LOW Voltage Level	HIGH Voltage Level	3-State
HIGH Voltage Level	Don't Care	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions		Min.	Max.	Unit
$V_{\text {CCA }}$	Supply Voltage			-0.5	4.6	V
$\mathrm{V}_{\text {CCB }}$				-0.5	4.6	
V_{1}	DC Input Voltage	I/O Port A		-0.5	4.6	V
		I/O Port B		-0.5	4.6	
		Control Inputs (T/R, $\overline{\mathrm{OE}}$)		-0.5	4.6	
V_{O}	Output Voltage ${ }^{(1)}$	Output 3-State		-0.5	4.6	V
		Output Active (A_{n})		$\begin{array}{\|c\|} \hline-0.5 \text { to } \\ \mathrm{V}_{\mathrm{CCA}} \\ \hline \end{array}$	0.5	
		Output Active (B_{n})		$\begin{array}{\|c} \hline-0.5 \text { to } \\ V_{C C B} \end{array}$	0.5	
$\mathrm{I}_{\text {K }}$	DC Input Diode Current	$\mathrm{V}_{1}<0 \mathrm{~V}$			-50	mA
$\mathrm{l}_{\text {OK }}$	DC Output Diode Current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$			-50	mA
		$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{cc}}$			50	
$\mathrm{IOH} / \mathrm{l}_{\mathrm{OL}}$	DC Output Source/Sink Current				± 50	mA
I_{Cc}	DC V ${ }_{\text {cc }}$ or Ground Current per Supply Pin				± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114, Mil Std 883e 3015.7	I/O to GND		4	kV
		Charged Device Model, JESD22-C101,STM 5.3			1	
		Machine Model, JESD22-A115,STM 5.2			200	V

Note:

1. I/O absolute maximum ratings must be observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Conditions	Min.	Max.	Unit
V_{Cc}	Power Supply	Operating $\mathrm{V}_{\text {CCA }}$ or $\mathrm{V}_{\mathrm{CCB}}$		1.1	3.6	V
V_{1}	Input Voltage	Port A		0	3.6	V
		Port B		0	3.6	
		Control Inputs (T/ $\overline{\mathrm{R}}, \overline{\mathrm{OE}}$)		0	$\mathrm{V}_{\text {CCA }}$	
$\mathrm{IOH}_{\mathrm{O}} / \mathrm{IOL}_{\mathrm{OL}}$	Output Current	$\mathrm{V}_{\mathrm{Cco}}$	3.0 V to 3.6 V		± 24	mA
			2.3 V to 2.7 V		± 18	
			1.65 V to 1.95 V		± 6	
			1.40 V to 1.65 V		± 2	
			1.1 V to 1.4 V		± 0.5	
$\mathrm{T}_{\text {A }}$	Operating Temperature, Free Air			-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate	$\mathrm{V}_{\text {CCA/B }}=1.1 \mathrm{~V}$ to 3.6 V			10	ns/V

Note:

2. All unused inputs must be held at $\mathrm{V}_{\mathrm{CCI}}$ or GND .

Electrical Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{ccI}}(\mathrm{V})$	$\mathrm{V}_{\text {cco }}(\mathrm{V})$	Min.	Max.	Units
$\mathrm{V}_{\text {IH }}$	HIGH Level Input ${ }^{(3)}$	Data Inputs $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	2.70 to 3.60	1.1 to 3.6	2.0		V
			2.30 to 2.70		1.6		
			1.65 to 2.30		$0.65 \times \mathrm{V}_{\text {clı }}$		
			1.40 to 1.65		$0.65 \times \mathrm{V}_{\text {ccl }}$		
			1.10 to 1.40		$0.9 \times \mathrm{V}_{\mathrm{ccI}}$		
		Control Pins $\overline{O E}, T \bar{R}$ (Referenced to $\mathrm{V}_{\mathrm{CCA}}$)	2.70 to 3.6	1.1 to 3.6	2.0		
			2.30 to 2.70		1.6		
			1.65 to 2.30		$0.65 \times \mathrm{V}_{\text {CCA }}$		
			1.40 to 1.65		$0.65 \times \mathrm{V}_{\text {CCA }}$		
			1.10 to 1.40		$0.9 \times \mathrm{V}_{\text {CCA }}$		
VIL	LOW Level Input ${ }^{(3)}$	Data Inputs $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	2.70 to 3.60	1.1 to 3.6		0.8	V
			2.30 to 2.70			0.7	
			1.65 to 2.30			$0.35 \times \mathrm{V}_{\text {ccl }}$	
			1.40 to 1.65			$0.35 \times \mathrm{V}_{\mathrm{ccI}}$	
			1.10 to 1.40			$0.10 \times \mathrm{V}_{\text {clı }}$	
		Control Pins / $\overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}}$ (Referenced to $\mathrm{V}_{\mathrm{CCA}}$)	2.70 to 3.60	1.1 to 3.6		0.8	
			2.30 to 2.70			0.7	
			1.65 to 2.30			$0.35 \times \mathrm{V}_{\text {clı }}$	
			1.40 to 1.65			$0.35 \times \mathrm{V}_{\text {cl }}$	
			1.10 to 1.40			$0.10 \times \mathrm{V}_{\text {clı }}$	
$\mathrm{V}_{\text {OH }}$	HIGH Level Output ${ }^{(4)}$	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$	1.1 to 3.6	1.1 to 3.6	$\mathrm{V}_{\mathrm{cco}}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.7	2.2		
		$\mathrm{I}_{\text {OH }}=-18 \mathrm{~mA}$	3.0	3.0	2.4		
		$\mathrm{l}_{\text {OH }}=-24 \mathrm{~mA}$	3.0	3.0	2.2		
		$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.3	2.3	2.0		
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.3	2.3	1.8		
		$\mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.3	2.3	1.7		
		$\mathrm{IOH}=-6 \mathrm{~mA}$	1.65	1.65	1.25		
		$\mathrm{IOH}=-2 \mathrm{~mA}$	1.4	1.4	1.05		
		$\mathrm{I}_{\text {OH }}=-0.5 \mathrm{~mA}$	1.1	1.1	$0.75 \times \mathrm{V}_{\text {cco }}$		
$\mathrm{V}_{\text {OL }}$	LOW Level Output ${ }^{(4)}$	$\mathrm{loL}=100 \mu \mathrm{~A}$	1.1 to 3.6	1.1 to 3.6		0.2	V
		$\mathrm{I}_{\mathrm{LL}}=12 \mathrm{~mA}$	2.7	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	3.0	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0	3.0		0.55	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.3	2.3		0.4	
		$\mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA}$	2.3	2.3		0.6	
		$\mathrm{IOL}^{\text {a }}$ = 6 mA	1.65	1.65		0.3	
		$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	1.4	1.4		0.35	
		$\mathrm{l}_{\mathrm{OL}}=0.5 \mathrm{~mA}$	1.1	1.1		$0.3 \times \mathrm{V}_{\text {cco }}$	

Continued on the following page...

Electrical Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{ccI}}(\mathrm{V})$	$\mathrm{V}_{\text {cco }}(\mathrm{V})$	Min.	Max.	Units
I	Input Leakage Current, Control Pins	$\mathrm{V}_{1}=\mathrm{V}_{\text {cCA }}$ or GND	1.1 to 3.6	3.6		± 1.0	$\mu \mathrm{A}$
loff	Power Off Leakage Current	$\begin{aligned} & \mathrm{A}_{\mathrm{n}}, \mathrm{~V}_{1} \text { or } \mathrm{V}_{\mathrm{o}}=0 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	0	3.6		± 10	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{B}_{\mathrm{n}}, \mathrm{~V}_{1} \text { or } \mathrm{V}_{\mathrm{o}}=0 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	3.6	0		± 10	
loz	3-State Output Leakage$\begin{aligned} & \left(0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V},\right. \\ & \left.\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\text {II }}\right) \end{aligned}$	$\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, / \mathrm{OE}=\mathrm{V}_{\mathrm{H}}$	3.6	3.6		± 10	$\mu \mathrm{A}$
		B_{n}, /OE= Don't Care ${ }^{(5)}$	0	3.6		± 10	
		A_{n}, /OE $=$ Don't Care ${ }^{(5)}$	3.6	0		± 10	
$\mathrm{I}_{\text {CCAB }}$	Quiescent Supply Current ${ }^{(6)}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ccl }}$ or GND; $\mathrm{I}_{\mathrm{o}}=0$	1.1 to 3.6	1.1 to 3.6		20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ccz }}$			1.1 to 3.6	1.1 to 3.6		20	
$I_{\text {cca }}$		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}$ or GND; $\mathrm{I}_{\mathrm{o}}=0$	0	1.1 to 3.6		-10	
			1.1 to 3.6	0		10	
$\mathrm{I}_{\text {c¢B }}$		$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\text {cCB }}$ or $\mathrm{GND} ; \mathrm{l}_{\mathrm{o}}=0$	1.1 to 3.6	0		-10	
			0	1.1 to 3.6		10	
$\Delta \mathrm{l}_{\text {ccaib }}$	Increase in Icc per Input; Other Inputs at V_{CC} or GND	$\mathrm{V}_{1 H}=3.0$	3.6	3.6		500	$\mu \mathrm{A}$

Notes:

3. $\quad \mathrm{V}_{\mathrm{CCI}}=$ the V_{CC} associated with the data input under test.
4. $\quad \mathrm{V}_{\mathrm{CCO}}=$ the V_{CC} associated with the output under test.
5. Don't care $=$ any valid logic level.
6. Reflects current per supply, $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CCA}}=3.0 \mathrm{~V}$ to 3.6 V												
Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min.	Max.									
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay A to B	0.2	3.5	0.3	3.9	0.5	5.4	0.6	6.8	1.4	22.0	ns
	Propagation Delay B to A	0.2	3.5	0.2	3.8	0.3	4.0	0.5	4.3	0.8	13.0	
$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$	Output Enable /OE to B	0.5	4.0	0.7	4.4	1.0	5.9	1.0	6.4	1.5	17.0	ns
	Output Enable IOE to A	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	Output Disable /OE to B	0.2	3.8	0.2	4.0	0.7	4.8	1.5	6.2	2.0	17.0	ns
	Output Disable /OE to A	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	

$V_{C C A}=2.3 \mathrm{~V}$ to 2.7 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min.	Max.									
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay A to B	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	1.4	22.0	ns
	Propagation Delay B to A	0.3	3.9	0.4	4.2	0.5	4.5	0.5	4.8	1.0	7.0	
$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$	Output Enable /OE to B	0.6	4.2	0.8	4.6	1.0	6.0	1.0	6.8	1.5	17.0	ns
	Output Enable /OE to A	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	Output Disable /OE to B	0.2	4.1	0.2	4.3	0.7	4.8	1.5	6.7	2.0	17.0	ns
	Output Disable /OE to A	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	

$\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$ to 1.95 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min.	Max.									
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay A to B	0.3	4.0	0.5	4.5	0.8	5.7	0.9	7.1	1.5	22.0	ns
	Propagation Delay B to A	0.5	5.4	0.5	5.6	0.8	5.7	1.0	6.0	1.2	8.0	
$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$	Output Enable /OE to B	0.6	5.2	0.8	5.4	1.2	6.9	1.2	7.2	1.5	18.0	ns
	Output Enable /OE to A	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	Output Disable /OE to B	0.2	5.1	0.2	5.2	0.8	5.2	1.5	7.0	2.0	17.0	ns
	Output Disable /OE to A	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	

AC Electrical Characteristics (Continued)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min.	Max.									
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay A to B	0.5	4.3	0.5	4.8	1.0	6.0	1.0	7.3	1.5	22.0	ns
	Propagation Delay B to A	0.6	6.8	0.8	6.9	0.9	7.1	1.0	7.3	1.3	9.5	
$\mathrm{t}_{\text {PzH, }} \mathrm{t}_{\text {PzL }}$	Output Enable /OE to B	1.1	7.5	1.1	7.6	1.3	7.7	1.4	7.9	2.0	20.0	ns
	Output Enable IOE to A	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable IOE to B	0.4	6.1	0.4	6.2	0.9	6.2	1.5	7.5	2.0	18.0	ns
	Output Disable IOE to A	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	

$\mathrm{V}_{\mathrm{CCA}}=1.1 \mathrm{~V}$ to 1.3 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min.	Max.									
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay A to B	0.8	13.0	1.0	7.0	1.2	8.0	1.3	9.5	2.0	24.0	ns
	Propagation Delay B to A	1.4	22.0	1.4	22.0	1.5	22.0	1.5	22.0	2.0	24.0	
$\mathrm{t}_{\text {PzH }}, \mathrm{t}_{\text {PzL }}$	Output Enable /OE to B	1.0	12.0	1.0	9.0	2.0	10.0	2.0	11.0	2.0	24.0	ns
	Output Enable IOE to A	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	Output Disable IOE to B	1.0	15.0	0.7	7.0	1.0	8.0	2.0	10.0	2.0	20.0	ns
	Output Disable IOE to A	2.0	15.0	2.0	12.0	2.0	12.0	2.0	12.0	2.0	12.0	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CCA/B }}$	4	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CCA }}$	5	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

AC Loadings and Waveforms

Figure 2. AC Test Circuit

Test	Switch
$\mathrm{t}_{\mathrm{PLH},}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PLZ},}, \mathrm{t}_{\mathrm{PZL}}$	$\mathrm{V}_{\mathrm{CCO}} \bullet 2$ at $\mathrm{V}_{\mathrm{CCO}}=3.3 \pm 0.3 \mathrm{~V}, 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$,
$\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PZH}}$	$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}, 1.2 \mathrm{~V} \pm 0.1 \mathrm{~V}$
	GND

Table 1. AC Load Table

$\mathbf{V C c o ~}$	\mathbf{C}_{L}	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R t r} \mathbf{1}$
$1.2 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$
$1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	30 pF	$500 \mathrm{k} \Omega$	$500 \mathrm{k} \Omega$
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	30 pF	$500 \mathrm{k} \Omega$	$500 \mathrm{k} \Omega$
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	30 pF	$500 \mathrm{k} \Omega$	$500 \mathrm{k} \Omega$

Note:
7. Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%

Figure 3. Waveform for Inverting and NonInverting Functions

Note:
8. Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.0 \mathrm{~ns}, 10 \%$ to 90%

Figure 4. 3-State Output Low Enable and Disable for Low Voltage Logic

Note:

9. Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.0 \mathrm{~ns}, 10 \%$ to 90%

Figure 5. 3-State Output High Enable and Disable for Low Voltage Logic

Symbol	V_{CC}				
	$\mathbf{3 . 3} \mathbf{V} \pm \mathbf{0 . 3} \mathbf{V}$	$\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2} \mathrm{V}$	$\mathbf{1 . 8} \mathbf{V} \pm \mathbf{0 . 1 5} \mathrm{V}$	$\mathbf{1 . 5} \mathbf{V} \pm \mathbf{0 . 1} \mathrm{V}$	$\mathbf{1 . 2} \mathbf{V} \mathbf{0 . 1} \mathbf{~ V}$
V_{MI}	$\mathrm{V}_{\mathrm{CCI}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CCI}} / 2$	$\mathrm{~V}_{\mathrm{CCI}} / 2$	$\mathrm{~V}_{\mathrm{CCI}} / 2$
$\mathrm{~V}_{\mathrm{MO}}$	$\mathrm{V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.1 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.1 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.1 \mathrm{~V}$

Note:
10. For $\mathrm{V}_{\mathrm{MI}} \mathrm{V}_{\mathrm{CCO}}=\mathrm{V}_{\mathrm{CCA}}$ for control pins $\mathrm{T} / \overline{\mathrm{R}}$ and $\overline{\mathrm{OE}}$ or $\mathrm{V}_{\mathrm{CCA}} / 2$.

Functional Description

Power-Up/Power-Down Sequencing

FXL translators offer an advantage in that either V_{cc} may be powered up first. This benefit derives from the chip design. When either V_{Cc} is at 0 V , outputs are in a High-impedance state. The control inputs (T/R and $\overline{O E}$) are designed to track the $\mathrm{V}_{\mathrm{CCA}}$ supply. A pull-up resistor tying $O E$ to $\mathrm{V}_{\mathrm{CCA}}$ should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/power-down. The size of the pullup resistor is based upon the current-sinking capability of the OE driver.

The recommended power-up sequence is:

1. Apply power to either V_{Cc}.
2. Apply power to the $T \bar{R}$ input (logic HIGH for A-to-B operation; logic LOW for B-to-A operation) and to the respective data inputs (A port or B port). This may occur at the same time as step 1.
3. Apply power to the other V_{Cc}.
4. Drive the OE input LOW to enable the device.

The recommended power-down sequence is:

1. Drive $\overline{\mathrm{OE}}$ input HIGH to disable the device.
2. Remove power from either V_{cc}.
3. Remove power from the other V_{cc}.

Physical Dimensions

Figure 6. 24-Pin Molded Leadless Package (MLP), JEDEC MO-220, $3.5 \times 4.5 \mathrm{~mm}$
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packagingl.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://mww.fairchildsemi.com/packaging/MLP24B TNR.pdf.
 WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHID'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITIEN APPROVAL OF FAIRCHID SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (C) whose failure to perform when propenty used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, whw.fairchildserri.com, under Sales Support
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semioonductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authonzed Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference infomation only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N PI74LVCC3245AS 5962-8683401DA 5962-8968201LA 5962-8953501KA 5962-86834012A 5962-7802002MFA
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S MM74HC245AMTCX 74LVX245MTC 74ALVC16245MTDX
74LCXR162245MTX 74LVXC3245MTCX 74VHC245M 74VHC245MX JM38510/65553BRA FXL2TD245L10X 74LVC1T45GM,115
74LVC245ADTR2G TC74AC245P(F) SNJ54LS245FK 74LVT245BBT20-13 74AHC245D.112 74AHCT245D. 112
SN74LVCH16952ADGGR CY74FCT16245TPVCT 74AHCT245PW. 118 74LV245DB. 118 74LV245D. 112 74LV245PW. 112
74LVC2245APW. 112 74LVCH245AD. 112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R 74LVCR162245ZQLR
SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N MC100EP16DTR2G 5962-9221403MRA
74ALVC164245PAG 74FCT16245ATPAG 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

