

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]

Terminal Names	Description
$\overline{\mathrm{OE}}$ A_{n} Y_{n} $\mathrm{V}_{\mathrm{CCI}}$ $\mathrm{V}_{\mathrm{CCO}}$ GND	Output Enable Input Data Inputs 3-STATE Outputs Inputs Power Supply Outputs Power Supply Ground

Connection Diagram

Terminal Assignments for DQFN

(Top View)

Power-Up/Power-Down Sequencing

FXL translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 volts, outputs are in a HIGH-Impedance state. The control input, $\overline{\mathrm{OE}}$, is designed to track the $\mathrm{V}_{\mathrm{CCI}}$ supply. A pull-up resistor tying $\overline{\mathrm{OE}}$ to $\mathrm{V}_{\mathrm{CCI}}$ should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/ power-down. The size of the pull-up resistor is based upon the current-sinking capability of the OE driver.

Truth Table

Inputs		Outputs
$\overline{\mathrm{OE}}$	$\mathbf{A}_{\mathbf{n}}$	$\mathbf{Y}_{\mathbf{n}}$
L	L	L
L	H	H
H	X	3-STATE

= HIGH Voltage Level
= LOW Voltage Level
X = Don't Care

Terminal Assignment

Terminal Number	Terminal Name
1	$\mathrm{~V}_{\mathrm{CCl}}$
2	$\mathrm{~A}_{0}$
3	$\mathrm{~A}_{1}$
4	$\mathrm{~A}_{2}$
5	$\mathrm{~A}_{3}$
6	$\mathrm{~A}_{4}$
7	GND
8	$\overline{\mathrm{OE}}$
9	Y_{4}
10	Y_{3}
11	Y_{2}
12	Y_{1}
13	Y_{0}
14	$\mathrm{~V}_{\mathrm{CCO}}$

The recommended power-up sequence is the following:

1. Apply power to either V_{CC}.
2. Apply power to the $\overline{\mathrm{OE}}$ input (Logic HIGH for $\mathrm{A}-\mathrm{to}-\mathrm{B}$ operation; Logic LOW for B-to-A operation) and to the respective data inputs (A Port or B Port). This may occur at the same time as Step 1.
3. Apply power to other V_{CC}.
4. Drive the $\overline{\mathrm{OE}}$ input LOW to enable the device.

The recommended power-down sequence is the following:

1. Drive $\overline{\mathrm{OE}}$ input HIGH to disable the device.
2. Remove power from either V_{CC}.
3. Remove power from other V_{CC}.

DC Electrical Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{CCI}}$ (V)	$\mathrm{V}_{\mathrm{cco}}$ (V)	Min	Max	Units
$\overline{\mathrm{V}_{\mathrm{IH}}}$	High Level Input Voltage		2.7-3.6	1.1-3.6	2.0		v
			2.3-2.7		1.6		
			1.65-2.3		$0.65 \times \mathrm{V}_{\text {cCl }}$		
			1.4-1.65		$0.65 \times \mathrm{V}_{\text {cli }}$		
			1.4-1.65		$0.9 \times \mathrm{V}_{\mathrm{CCI}}$		
V_{IL}	Low Level Input Voltage		2.7-3.6	1.1-3.6		0.8	v
			2.3-2.7			0.7	
			1.65-2.3			$0.35 \times \mathrm{V}_{\text {CCI }}$	
			1.4-1.65			$0.35 \times \mathrm{V}_{\text {ClI }}$	
			1.1-1.4			$0.1 \times \mathrm{V}_{\mathrm{CCI}}$	
$\overline{\mathrm{V}} \mathrm{OH}$	High Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.1-3.6	1.1-3.6	$\mathrm{V}_{\mathrm{CCO}}-0.2$		v
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.7	2.2		
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0				
		$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.3	2.3	2.0		
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.3	2.3	1.8		
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.3	2.3	1.7		
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	1.65	1.65	1.25		
		$\mathrm{IOH}^{\mathrm{O}}=-2 \mathrm{~mA}$	1.4	1.4	1.05		
		$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	1.1	1.1	$0.75 \times \mathrm{V}_{\mathrm{CC} 0}$		

AC Electrical Characteristics $\mathrm{v}_{\text {cll }}=3.0 \mathrm{~V}$ to 3.6 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
$\mathrm{t}_{\text {PLH，}} \mathrm{t}_{\text {PHL }}$	Propagation Delay A to Y	0.2	3.5	0.3	3.9	0.7	5.4	0.8	6.8	1.4	22.0	ns
$\mathrm{t}_{\text {PZH，}} \mathrm{t}_{\text {PZL }}$	Output Enable $\overline{\mathrm{OE}}$ to Y	0.5	4.0	0.7	4.4	1.0	5.9	1.0	6.4	1.5	17.0	ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable $\overline{\mathrm{OE}}$ to Y	0.2	3.8	0.2	4.0	0.7	4.8	1.5	6.2	2.0	17.0	ns

AC Electrical Characteristics $\mathrm{v}_{\mathrm{cCI}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay A toY	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	1.4	22.0	ns
tpzh，$^{\text {t }}$ PZL	Output Enable $\overline{\mathrm{OE}}$ to Y	0.6	4.2	0.8	4.6	1.0	6.0	1.0	6.8	1.5	17.0	ns
$\mathrm{t}_{\text {PHZ }}$ ，tPLZ	Output Disable $\overline{\mathrm{OE}}$ to Y	0.2	4.1	0.2	4.3	0.7	4.8	1.5	6.7	2.0	17.0	ns

AC Electrical Characteristics $\mathrm{v}_{\text {cll }}=1.65 \mathrm{~V}$ to 1.95 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
$\mathrm{t}_{\text {PLH，}} \mathrm{t}_{\text {PHL }}$	Propagation Delay A to Y	0.3	4.0	0.5	4.5	0.8	5.7	0.9	7.1	1.5	22.0	ns
$\mathrm{t}_{\text {PZH，}} \mathrm{t}_{\text {PZL }}$	Output Enable $\overline{\mathrm{OE}}$ to Y	0.6	5.2	0.8	5.4	1.2	6.9	1.2	7.2	1.5	18.0	ns
$\mathrm{t}_{\text {PHZ }}$ ，tPLZ	Output Disable $\overline{\mathrm{OE}}$ to Y	0.2	5.1	0.2	4.0	0.8	5.2	1.5	7.0	2.0	17.0	ns

AC Electrical Characteristics $\mathrm{v}_{\mathrm{cCI}}=1.4 \mathrm{~V}$ to 1.6 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
${ }_{\text {tPLH，}}$ tPHL	Propagation Delay A to Y	0.5	4.3	0.5	4.8	1.0	6.0	1.0	7.3	1.5	22.0	ns
tezh，$^{\text {P }}$ PZL	Output Enable $\overline{\mathrm{OE}}$ to Y	1.1	7.5	1.1	7.6	1.3	7.7	1.4	7.9	2.0	20.0	ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable $\overline{\mathrm{OE}}$ to Y	0.4	6.1	0.4	6.2	0.9	6.2	1.5	7.5	2.0	18.0	ns

AC Electrical Characteristics $\mathrm{v}_{\mathrm{ccI}}=1.1 \mathrm{~V}$ to 1.3 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										Units
		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cco}}= \\ 1.1 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{gathered}$		
		Min	Max									
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay A to Y	0.8	13.0	1.0	7.0	1.2	8.0	1.3	9.5	2.0	24.0	ns
trzh，$^{\text {t }}$ PZL	Output Enable $\overline{\mathrm{OE}}$ to Y	1.0	12.0	1.0	9.0	2.0	10.0	2.0	11.0	2.0	24.0	ns
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	Output Disable $\overline{\mathrm{OE}}$ to Y	1.0	15.0	0.7	7.0	1.0	8.0	2.0	10.0	2.0	20.0	ns

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance A_{n} Control Pin（ $\left.\overline{\mathrm{OE}}\right)$	$\mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCI}}$	4.0	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance Y_{n}	$\mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCI}}$	5.0	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CCl}}$ ，	20.0	pF

AC Loading and Waveforms

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	OPEN
$\mathrm{t}_{\mathrm{PLZ}}, \mathrm{t}_{\mathrm{PZL}}$	$\mathrm{V}_{\mathrm{CCO}} \times 2$ at $\mathrm{V}_{\mathrm{CCO}}=3.3 \pm 0.3 \mathrm{~V}, 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$,
	$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}, 1.2 \mathrm{~V} \pm 0.1 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PZH}}$	GND

AC Load Table

$\mathbf{V}_{\mathbf{C c o}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$	Rtr1
$1.2 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$
$1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	15 pF	$2 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$

Note: Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%
Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90%, @ $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only
FIGURE 2. Waveform for Inverting and Non-Inverting Functions

Note: $\operatorname{Input} t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%
Input $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, @ $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only
FIGURE 3. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Note: Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%
Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90%, @ $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only
FIGURE 4. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$				
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1} \mathbf{V}$	$\mathbf{1 . 2 V} \pm \mathbf{0 . 1 V}$
V_{mi}	$\mathrm{V}_{\mathrm{CCI}} / 2$	$\mathrm{~V}_{\mathrm{CC} /} / 2$	$\mathrm{~V}_{\mathrm{CCI}} / 2$	$\mathrm{~V}_{\mathrm{CC} /} / 2$	$\mathrm{~V}_{\mathrm{CCI}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$	$\mathrm{~V}_{\mathrm{CCO}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.1 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+01 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+01 \mathrm{~V}$

Note: For $\mathrm{V}_{\mathrm{mi}}: \mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCA}}$ for Control Pins $\mathrm{T} / \overline{\mathrm{R}}$ and $\overline{\mathrm{OE}}$, or $\mathrm{V}_{\mathrm{CCA}} / 2$

Physical Dimensions inches (millimeters) unless otherwise noted

RECOMMENDED LAND PATTERN

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AA
B. DIMENSIONS ARE \mathbb{N} MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLPO14ArevA

14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, $2.5 \times 3.0 \mathrm{~mm}$ Package Number MLP014A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

