ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]ON Semiconductor ${ }^{\text {® }}$
FXLA102

Low-Voltage Dual-Supply 2-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing

Features

- Bi-Directional Interface betw een Tw o Levels: from 1.1 V to 3.6 V
- Fully Configurable: Inputs and Outputs Track Vcc Level
- Non-Preferential Pow er-Up; Either V_{cc} May Be Pow ered Up First
- Outputs Sw itch to 3-State if Either V_{cc} is at GND
- Pow er-Off Protection
- Bus-Hold on Data Inputs Eliminates the Need for Pull-Up Resistors; Do Not Use Pull-Up Resistors on A or B Ports
- Control Input (/OE) Referenced to $\mathrm{V}_{\mathrm{cca}}$ Voltage
- Packaged in MicroPak ${ }^{\text {TM }} 8(1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm})$
- Direction Control Not Necessary
- 100 Mbps Throughput when Translating Betw een 1.8 V and 2.5 V
- ESD Protection Exceeds:
- 15 kV HBM ((B Port VO to GND) per JESD22-

A114 \& Mil Std 883e 3015.7)

- 8 kV HBM ((A Port VO to GND) per JESD22-A114 \& Mil Std 883e 3015.7)
- 2 kV CDM (per ESD STM 5.3)

Description

The FXLA102 is a configurable dual-voltage supply translator for both uni-directional and bi-directional voltage translation betw een two logic levels. The device allows translation betw een voltages as high as 3.6 V to as low as 1.1 V . The A port tracks the $\mathrm{V}_{\mathrm{cca}}$ level and the B port tracks the $\mathrm{V}_{\text {ccB }}$ level. This allow s for bi-directional voltage translation over a variety of voltage levels: $1.2 \mathrm{~V}, 1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V .

The device remains in three-state as long as either $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$, allow ing either V_{cc} to be pow ered up first. Internal pow er-down control circuits place the device in 3-state if either V_{Cc} is removed.

The /OE input, when HIGH, disables both the A and B ports by placing them in a 3 -state condition. The /OE input is supplied by $V_{\text {CcA }}$.

The FXLA102 supports bi-directional translation without the need for a direction control pin. The tw o ports of the device have auto-direction sense capability. Ether port may sense an input signal and transfer it as an output signal to the other port.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package	Packing Method
FXLA102L8X	XF	-40 to $85^{\circ} \mathrm{C}$	8 -Lead MicroPak ${ }^{\top M} 1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Package	5 K Units Tape and Reel

Pin Configuration

Figure 1. Pin Configuration (Top Through View)

Pin Definitions

Pin \#	Name	
1	V CCA	A-Side Pow er Supply
2	$\mathrm{~A}_{0}$	A Side Input or 3-State Output
3	$\mathrm{~A}_{1}$	A Side Input or 3-State Output
4	GND	Ground
5	IOE	Output Enable Input
6	$\mathrm{~B}_{1}$	B Side Input or 3-State Output
7	$\mathrm{~B}_{0}$	B Side Input or 3-State Output
8	$\mathrm{~V}_{\text {CCB }}$	B Side Pow er Supply

Functional Diagram

Figure 2. Functional Diagram

Function Table

Control	Outputs
$/ \mathrm{OE}$	
L	Normal Operation
H	3-State

$\mathrm{H}=\mathrm{HIGH}$ Logic Level
L = LOW Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Min.	Max.	Unit
Vcc	Supply Voltage	$\mathrm{V}_{\text {CCA }}$	-0.5	4.6	V
		$\mathrm{V}_{\text {CCB }}$	-0.5	4.6	
V	DC Input Voltage	VO Ports A and B	-0.5	4.6	V
		Control Input (/OE)	-0.5	4.6	
Vo	Output Voltage ${ }^{\text {2 }}$	Output 3-State	-0.5	4.6	v
		Output Active (A_{n})	-0.5	$\mathrm{V}_{\text {CCA }}+0.5$	
		Output Active (B_{n})	-0.5	$\mathrm{V}_{\text {CCB }}+0.5$	
lik	DC Input Diode Current	V < 0 V		-50	mA
1ок	DC Output Diode Current	Vo<0V		-50	mA
		$\mathrm{V}_{\mathrm{o}}>\mathrm{V}$ cc		+50	
loh/loL	DC Output Source/Sink Current		-50	+50	mA
lcc	DC V Cc or Ground Current (per Supply Pin)			± 100	mA
Tstg	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
PD	Pow er Dissipation			5	mW
ESD	Human Body Model, JESD22-A114	B Port VO to GND		15	kV
		A Port VO to GND		8	
	Charged Device Model, JESD22-C101			2	

Notes:

1. lo absolute maximum ratings must be observed.
2. All unused inputs and input/outputs must be held at $\mathrm{V}_{\mathrm{CCi}}$ or GND.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit
VCC	Pow er Supply	Operating $\mathrm{V}_{\text {CCA }}$ or $\mathrm{V}_{\text {CCB }}$	1.1	3.6	V
$\mathrm{V}_{\text {IN }}$	Input Voltage	Ports A and B	0	3.6	V
		Control Input (/OE)	0	V CCA	V
	Dynamic Output Current loh/loL	V cc $=3.0 \mathrm{~V}$ to 3.6 V		± 12	mA
		$\mathrm{V} \mathrm{cc}=2.3 \mathrm{~V}$ to 2.7 V		± 8	
		$\mathrm{V}_{\mathrm{Cc}}=1.65 \mathrm{~V}$ to 1.95 V		± 5	
		$\mathrm{V}_{\mathrm{Cc}}=1.40 \mathrm{~V}$ to 1.65 V		± 3	
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.4 V		± 2	
	Static Output Current	$\mathrm{V}_{\mathrm{cc}}=1.1 \mathrm{~V}$ to 3.6 V		± 4	$\mu \mathrm{A}$
T_{A}	Operating Temperature, Free Air		-40	+85	${ }^{\circ} \mathrm{C}$
dt/dV	Maximum Input Edge Rate	$\mathrm{V}_{\text {CCAB }}=1.1$ to 3.6 V		10	ns / V
$\Theta_{J A}$	Thermal Resistance			280	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Power-Up/Power-Down Sequence

FXL translators offer an advantage in that either Vcc may be pow ered up first. This benefit derives from the chip design. When either V_{cc} is at 0 V , outputs are in a high-impedance state. The control input (/OE) is designed to track the $\mathrm{V}_{\text {CCA }}$ supply. A pull-up resistor tying /OE to Vcca should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up or power-down. The size of the pull-up resistor is based upon the current-sinking capability of the device driving the /OE pin.

The recommended pow er-up sequence is:

1. Apply pow er to the first V_{cc}.
2. Apply pow er to the second $\mathrm{V}_{\text {cc }}$.
3. Drive the /OE input LOW to enable the device.

The recommended power-dow n sequence is:

1. Drive /OE input HIGH to disable the device.
2. Remove pow er from either V_{cc}.
3. Remove pow er from other V cc.

Pull-Up/Pull-Down Resistors

Do not use pull-up or pull-down resistors. This device has bus-hold circuits: pull-up or pull-down resistors are not recommended because they interfere with the output state. The current through these resistors may exceed the hold drive, $l_{(\text {(HOLD })}$ and/or $l_{(O D)}$ bus-hold currents. The bus-hold feature eliminates the need for extra resistors.

DC Electrical Characteristics

$\mathrm{T}_{A}=-40$ to $85^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cca }}(\mathrm{V})$	$\mathrm{V}_{\text {ccв }}(\mathrm{V})$	Min.	Typ.	Max.	Units
VIHA	High-Level Input Voltage	Data Inputs A_{n} Control Pin /OE	2.70 to 3.60	1.10 to 3.60	2.00			V
			2.30 to 2.70		1.60			
			1.65 to 2.30		. 65 xV cca			
			1.40 to 1.65		. $65 \times \mathrm{V}$ CCA			
			1.10 to 1.40		. $90 \times \mathrm{V}$ CCA			
$\mathrm{V}_{\text {IHB }}$		Data Inputs B_{n}	1.10 to 3.60	2.70 to 3.60	2.00			V
				2.30 to 2.70	1.60			
				1.65 to 2.30	. $65 \times \mathrm{V}$ ccв			
				1.40 to 1.65	. $65 \times \mathrm{V}$ ссв			
				1.10 to 1.40	. $90 x \mathrm{~V}$ ссв			
$V_{\text {ILA }}$	Low-Level Input Voltage	Data Inputs A_{n} Control Pin /OE	2.70 to 3.60	1.10 to 3.60			. 80	V
			2.30 to 2.70				. 70	
			1.65 to 2.30				. $35 \times \mathrm{V}$ CCA	
			1.40 to 1.65				. $35 \times \mathrm{V}$ CCA	
			1.10 to 1.40				.10xVcca	
VILB		Data Inputs B_{n}	1.10 to 3.60	2.70 to 3.60			. 80	V
				2.30 to 2.70			. 70	
				1.65 to 2.30			. $35 \times \mathrm{V}$ CCB	
				1.40 to 1.65			. $35 \times \mathrm{x}$ ССС	
				1.10 to 1.40			. $10 \times \mathrm{V}$ CCB	
$\mathrm{V}_{\text {OHA }}$	High-Level Output Voltage 3	ІОн $=-4 \mu \mathrm{~A}$	1.10 to 3.60	1.10 to 3.60	$\mathrm{V}_{\text {CCA }}-.40$			V
$\mathrm{V}_{\text {онв }}$		$\mathrm{l}_{\text {OH }}=-4 \mu \mathrm{~A}$	1.10 to 3.60	1.10 to 3.60	$\mathrm{V}_{\text {ccb }}-.40$			
V ${ }_{\text {OLA }}$	Low -Level Output Voltage ${ }^{3}$	$\mathrm{loL}=4 \mu \mathrm{~A}$	1.10 to 3.60	1.10 to 3.60			. 4	V
V OLB		loL=4 $\mu \mathrm{A}$	1.10 to 3.60	1.10 to 3.60			. 4	
$l_{\text {(HOLD }}$	Bus-Hold Input Minimum Drive Current	$\mathrm{V}_{\text {IN }}=0.80 \mathrm{~V}$	3.00	3.00	75.0			$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=2.00 \mathrm{~V}$	3.00	3.00	-75.0			
		$\mathrm{V}_{\mathrm{IN}}=0.70 \mathrm{~V}$	2.30	2.30	45.0			
		$\mathrm{V}_{\mathrm{IN}}=1.60 \mathrm{~V}$	2.30	2.30	-45.0			
		$\mathrm{V}_{\text {IN }}=0.57 \mathrm{~V}$	1.65	1.65	25.0			
		$\mathrm{V}_{\mathrm{IN}}=1.07 \mathrm{~V}$	1.65	1.65	-25.0			
		$\mathrm{V}_{\text {IN }}=0.49 \mathrm{~V}$	1.40	1.40	11.0			
		$\mathrm{V}_{\text {IN }}=0.91 \mathrm{~V}$	1.40	1.40	-11.0			
		$\mathrm{V}_{\mathrm{IN}}=0.11 \mathrm{~V}$	1.10	1.10		4.0		
		$\mathrm{V}_{\text {IN }}=0.99 \mathrm{~V}$	1.10	1.10		-4.0		

DC Electrical Characteristics (Continued)

$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cca }}(\mathrm{V})$	$\mathrm{V}_{\text {ccb }}(\mathrm{V})$	Min.	Max.	Units	
$\mathrm{l}_{(}(\mathrm{ODH})$	Bus-Hold Input Overdrive High Current ${ }^{(4)}$	Data Inputs A_{n}, B_{n}	3.60	3.60	450.00		$\mu \mathrm{A}$	
			2.70	2.70	300.00			
			1.95	1.95	200.00			
			1.60	1.60	120.00			
			1.40	1.40	80.00			
$\mathrm{l}_{(\text {(ODL) }}$	Bus-Hold Input Overdrive Low Current 5)	Data Inputs A_{n}, B_{n}	3.60	3.60	-450.00		$\mu \mathrm{A}$	
			2.70	2.70	-300.00			
			1.95	1.95	-200.00			
			1.60	1.60	-120.00			
			1.40	1.40	-80.00			
$\\|$	Input Leakage Current	Control Inputs /OE, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {cca }}$ or GND	1.10 to 3.60	3.60		± 1.0	$\mu \mathrm{A}$	
loff	Pow er-Off Leakage Current	A_{n} Port $\mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}$ to 3.6 V	0	3.6		± 2.0	$\mu \mathrm{A}$	
		B_{n} Port $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V	3.60	0		± 2.0		
loz	3-State Output Leakage	Data Outputs A_{n}, B_{n} $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or 3.6 V , $/ \mathrm{OE}=\mathrm{V}_{\mathrm{IH}}$	3.60	3.60		± 5.0	$\mu \mathrm{A}$	
		Data Outputs Data Outputs $A_{n} V_{0}=0 \mathrm{~V}$ or $3.6 \mathrm{~V}, / \mathrm{OE}=\mathrm{GND}$	3.60	0		± 5.0		
		Data Outputs B_{n} $\mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}$ or 3.6 V , /OE=GND	0	3.60		± 5.0		
Iccab	Quiescent Supply	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ccl}} \text { or } \mathrm{GND} ; \mathrm{l}=0, \\ & / \mathrm{OE}=\mathrm{GND} \end{aligned}$	1.10 to 3.60	1.10 to 3.60		10.0	$\mu \mathrm{A}$	
Iccz	Current 6' 7		1.10 to 3.60	1.10 to 3.60		10.0	$\mu \mathrm{A}$	
Icca	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCB }} \text { or GND; } \mathrm{l}=0 \\ & \mathrm{~B} \text {-to-A Direction, } \\ & \text { /OE=GND } \end{aligned}$	0	1.10 to 3.60		-10.0	$\mu \mathrm{A}$	
			1.10 to 3.60	0		10.0		
Іссв		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CCA }}$ or GND ; $\mathrm{l}=0$, A-to-B Direction, /OE=GND	1.10 to 3.60	0		-10.0	$\mu \mathrm{A}$	
			0	1.10 to 3.60		10.0		

Notes:
3. This is the output voltage for static conditions. Dynamic drive specifications are given in the Dynamic Output Electrical Characteristics table.
4. An external drive must source at least the specified current to sw itch LOW-to-HIGH
5. An external drive must source at least the specified current to sw itch HIGH-to-LOW.
6. $\quad \mathrm{V}_{\mathrm{Cc}}$ is the V_{Cc} associated w ith the input side.
7. Reflects current per supply, $\mathrm{V}_{\text {cca }}$ or V ссв. $^{\text {. }}$

Dynamic Output Electrical Characteristic

A Port (A_{n})
Output Load: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geq \mathrm{M} \Omega\left(\mathrm{C}_{10}=4 \mathrm{pF}\right), \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCA}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\left.\begin{array}{\|c\|} \hline \mathrm{V}_{\text {CCA }}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{array} \right\rvert\, \begin{gathered} \text { Typ. } \\ \hline \end{gathered}$	Units
		Typ.	Max.	Typ.	Max.	Typ.	Max	Typ.	Max.		
trise	Output Rise Time A Port'9		3.0		3.5		4.0		5.0	7.5	ns
trall	Output Fall Time A Port ${ }^{(10)}$		3.0		3.5		4.0		5.0	7.5	ns
IOHD	$\begin{aligned} & \hline \text { Dynamic } \\ & \text { Output } \\ & \text { Current } \\ & \text { High'9' } \end{aligned}$	-11.4		-7.5		-4.7		-3.2		-1.7	mA
lod	Dynamic Output Current Low (10)	+11.4		+7.5		+4.7		+3.2		+1.7	mA

B Port (B_{n})

Output Load: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geq \mathrm{M} \Omega\left(\mathrm{C}_{10}=5 \mathrm{pF}\right), \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{ccB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.1 \mathrm{~V} \\ \text { t } 1.3 \mathrm{~V} \end{gathered}$	Units
		Typ.	Max.	Typ.	Max.	Typ.	Max	Typ.	Max.	Typ.	
trise	Output Rise Time B Port 9)		3.0		3.5		4.0		5.0	7.5	ns
trall	$\begin{aligned} & \text { Output Fall } \\ & \text { Time }{ }^{\text {Ti }} \\ & \text { Port }{ }^{10} \text {) } \end{aligned}$		3.0		3.5		4.0		5.0	7.5	ns
IOHD	$\begin{array}{\|l\|} \hline \text { Dynamic } \\ \text { Output } \\ \text { Current } \\ \text { High } 9 \text {) } \\ \hline \end{array}$	-12.0		-7.9		-5.0		-3.4		-1.8	mA
loLo	Dynamic Output Current Low	+12.0		+7.9		+5.0		+3.4		+1.8	mA

Notes:

8. Dynamic output characteristics are guaranteed, but not tested.
9. See Figure 7.
10. See Figure 8.

AC Characteristics

$\mathrm{V}_{\mathrm{CCA}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{ccs}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\left.\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{cCB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{array} \right\rvert\, \begin{gathered} \text { Typ. } \\ \hline \end{gathered}$	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.		
tPLH,tPHL	A to B	0.2	3.5	0.3	3.9	0.5	5.4	0.6	6.8	10.0	ns
	B to A	0.2	3.5	0.2	3.8	0.3	5.0	0.5	6.0	7.0	ns
tPzL,tpzH	/OE to A, /OE to B		1.7		1.7		1.7		1.7	1.7	$\mu \mathrm{s}$
tskew	$\begin{array}{\|l} \hline \text { A Port }{ }^{111}, \\ \text { B Port } \end{array}$		0.5		0.5		0.5		1.0	1.0	ns

$\mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{cCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{ccB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \\ \hline \text { Typ. } \\ \hline \end{array}$	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.		
tPLH,tPHL	A to B	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	10.5	ns
	B to A	0.3	3.9	0.4	4.2	0.5	5.5	0.5	6.5	7.0	ns
tpz,tpze	$\begin{aligned} & \hline \text { IOE to A, } \\ & \text { IOE to B } \end{aligned}$		1.7		1.7		1.7		1.7	1.7	$\mu \mathrm{s}$
tskew	$\begin{aligned} & \text { A Port }{ }^{111}, \\ & \text { B Port }{ }^{(11)} \end{aligned}$		0.5		0.5		0.5		1.0	1.0	ns

$\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} V_{C C B}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{array}{\|c} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{array}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\mathrm{v}_{\mathrm{ccB}}=1.1 \mathrm{~V}$ to 1.3 V$\|$	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.		
tPLH,tpHL	A to B	0.3	5.0	0.5	5.5	0.8	6.7	0.9	7.5	11.0	ns
	B to A	0.5	5.4	0.5	5.6	0.8	6.7	1.0	7.0	7.0	ns
tPzL,tpzH	$\begin{aligned} & \hline \text { OE to A, } \\ & \text { IOE to B } \end{aligned}$		1.7		1.7		1.7		1.7	1.7	$\mu \mathrm{s}$
tskew	$\begin{aligned} & \text { A Port }{ }^{111}, \\ & \text { B Port }{ }^{(11)} \end{aligned}$		0.5		0.5		0.5		1.0	1.0	ns

Note:
11. Skew is the variation of propagation delay betw een output signals and applies only to output signals on the same port (A_{n} or B_{n}) and sw itching w ith the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 10). Skew is guaranteed, but not tested.

AC Characteristics (Continued)
$\mathrm{V}_{\mathrm{CCA}}=1.4 \mathrm{~V}$ to $1.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{ccB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Typ.	
tPLL,tpHL	A to B	0.5	6.0	0.5	6.5	1.0	7.0	1.0	8.5	11.5	ns
	B to A	0.6	6.8	0.8	6.9	0.9	7.5	1.0	8.5	9.0	ns
tPzL,tpzH	$\begin{aligned} & \hline \text { OE to A, } \\ & \text { /OE to B } \end{aligned}$		1.7		1.7		1.7		1.7	1.7	$\mu \mathrm{s}$
tskew	$\begin{aligned} & \text { A Port }{ }^{112)} \\ & \text { B Port }{ }^{12)} \end{aligned}$		1.0		1.0		1.0		1.0	1.0	ns

$V_{C C A}=1.1 \mathrm{~V}$ to $1.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{ccB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{cCB}}=1.1 \mathrm{~V} \\ \text { to } 1.3 \mathrm{~V} \end{gathered}$	Units
		Typ.	Typ.	Typ.	Typ.	Typ.	
tpLu,tpHL	A to B	7.1	6.5	7.0	7.1	13.5	ns
	B to A	10.3	10.5	10.8	11.3	13.5	ns
tpzL,tPzH	/OE to A, /OE to B	1.7	1.7	1.7	1.7	1.7	$\mu \mathrm{s}$
tskew	A Port, B Port ${ }^{(12)}$	1.0	1.0	1.0	1.0	1.0	ns

Note:
12. Skew is the variation of propagation delay betw een output signals and applies only to output signals on the same port (A_{n} or B_{n}) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 10). Skew is guaranteed, but not tested.

Maximum Data Rate

$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$.

$\mathrm{V}_{\text {cca }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \\ \text { to } 3.6 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V} \\ \text { to } 2.7 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V} \\ \text { to } 1.95 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCB}}=1.4 \mathrm{~V} \\ \text { to } 1.6 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{ccs}}=1.1 \mathrm{~V} \text { to } \\ 1.3 \mathrm{~V} \end{gathered}$	Units
	Min.	Min.	Min.	Min.	Typ.	
$\mathrm{V}_{\text {CCA }}=3.00 \mathrm{~V}$ to 3.60 V	140	120	100	80	40	Mbps
$\mathrm{V}_{\text {CCA }}=2.30 \mathrm{~V}$ to 2.70 V	120	120	100	80	40	Mbps
$\mathrm{V}_{\text {CCA }}=1.65 \mathrm{~V}$ to 1.95 V	100	100	80	60	40	Mbps
$\mathrm{V}_{\text {CCA }}=1.40 \mathrm{~V}$ to 1.60 V	80	80	60	60	40	Mbps
$\mathrm{V}_{\text {cca }}=1.10 \mathrm{~V}$ to 1.30 V	Typ.	Typ.	Typ.	Typ.	Typ.	
	40	40	40	40	40	Mbps

Notes:
13. Maximum data rate is guaranteed, but not tested.
14. Maximum data rate is specified in megabits per second (see Figure 9). It is equivalent to two otimes the F-toggle frequency, specified in megahertz. For example, 100 Mbps is equivalent to 50 MHz .

Capacitance

Symbol	Parameter		Conditions	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \text { Typical } \end{gathered}$	Units
Cln	Input Capacitance Control Pin (/OE)		$\mathrm{V}_{\text {CCA }}=\mathrm{V}_{\text {ccB }}=\mathrm{GND}$	3	pF
C/oo	Input / Output Capacitance	A_{n}	$\mathrm{V}_{\text {cca }}=\mathrm{V}_{\text {ccb }}=3.3 \mathrm{~V}, / \mathrm{OE}=\mathrm{V}_{\text {cca }}$	4	pF
		B_{n}		5	
$\mathrm{Cpp}_{\text {d }}$	Pow er Dissipation Capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	25	pF

I/O Architecture Benefit

The FXLA102 /O architecture benefits the end user, beyond level translation, in the follow ing three ways:

Auto Direction without an external direction pin.
Drive Capacitive Loads. Automatically shifts to a higher current drive mode only during "Dynamic Mode" or HL / LH transitions.

Lower Power Consumption. Automatically shifts to low -pow er mode during "Static Mode" (no transitions), low ering pow er consumption.
The FXLA102 does not require a direction pin. Instead, the VO architecture detects input transitions on both side and automatically transfers the data to the corresponding output. For example, for a given channel, if both A and B side are at a static LOW, the direction has been established as $A \rightarrow B$, and a LH transition occurs on the B port; the FXLA102 internal VO architecture automatically changes direction from $A \rightarrow B$ to $B \rightarrow A$.

During HL / LH transitions, or "Dynamic Mode," a strong output driver drives the output channel in parallel with a weak output driver. After a typical delay of approximately $10 \mathrm{~ns}-50 \mathrm{~ns}$, the strong driver is turned off, leaving the weak driver enabled for holding the logic state of the channel. This weak driver is called the "bus
hold." "Static Mode" is when only the bus hold drives the channel. The bus hold can be over ridden in the event of a direction change. The strong driver allows the FXLA102 to quickly charge and discharge capacitive transmission lines during dynamic mode. Static mode conserves pow er, where Icc is typically $<5 \mu \mathrm{~A}$.

Bus Hold Minimum Drive Current

Specifies the minimum amount of current the bus hold driver can source/sink. The bus hold minimum drive current ($\|_{\text {HOLD }}$) is $\mathrm{V}_{\text {CC }}$ dependent and guaranteed in the DC Electrical tables. The intent is to maintain a valid output state in a static mode, but that can be overridden w hen an input data transition occurs.

Bus Hold Input Overdrive Drive Current

Specifies the minimum amount of current required (by an external device) to overdrive the bus hold in the event of a direction change. The bus hold overdrive ($\|_{\mathrm{ODH}}, \mathrm{ll}_{\mathrm{OdL}}$) is $\mathrm{V}_{\text {CC }}$ dependent and guaranteed in the DC Eectrical tables.

Dynamic Output Current

The strength of the output driver during LH / HL transitions is referenced on page 8, Dynamic Output Electrical Characteristics, Іонд, and lold.

Test Diagrams

Figure 3. Test ${ }^{-}$Circuit

Table 1. AC Test Conditions

Test	Input Signal	Output Enable Control
$t_{\text {PLL }}, \mathrm{t}_{\mathrm{PHL}}$	Data Pulses	0 V
$\mathrm{t}_{\mathrm{PZL}}$	0 V	HIGH to LOW Sw itch
$\mathrm{t}_{\mathrm{PZH}}$	$\mathrm{V}_{\mathrm{CCI}}$	HIGH to LOW Sw itch

Table 2. AC Load

$\mathbf{V}_{\text {cco }}$	$\mathbf{C 1}$	$\mathbf{R 1}$
$1.2 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	15 pF	$1 \mathrm{M} \Omega$

Figure 4. Waveform for Inverting and Non-Inverting Functions
Notes:
15. Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%.
16. Input $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only.

Figure 5. 3-State Output Low Enable Time

Notes:

17. Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%.
18. Input $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $V_{I}=3.0 \mathrm{~V}$ to 3.6 V only.

Figure 6. 3-State Output High Enable Time
Notes:
19. Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90%.
20. Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only.

Table 3. Test Measure Points

Symbol	$\mathbf{V}_{\text {cc }}$
$\mathrm{V}_{\mathrm{MI}}{ }^{(21)}$	$\mathrm{V}_{\mathrm{ClI}} / 2$
$\mathrm{~V}_{\mathrm{MO}}$	$\mathrm{V}_{\mathrm{cco}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$0.9 \times \mathrm{V}_{\mathrm{CCo}}$
V_{Y}	$0.1 \times \mathrm{V}_{\mathrm{CCo}}$

Note:

21. $\mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCA}}$ for control pin /OE or $\mathrm{V}_{\mathrm{MI}}=\left(\mathrm{V}_{\mathrm{CCA}} / 2\right)$.

$$
\begin{aligned}
& \text { Vime } \\
& \mathrm{I}_{\text {OUT }} \\
& \mathrm{V}_{\mathrm{OH}} \approx\left(C_{L}+C_{I / O}\right) \times \frac{\Delta V_{O U T}}{\Delta t}=\left(C_{L}+C_{I / O}\right) \times \frac{(20 \%-80 \%) \cdot V_{C C O}}{t_{\text {RISE }}}
\end{aligned}
$$

Figure 7. Active Output Rise Time and Dynamic Output Current High

$$
I_{O L D} \approx\left(C_{L}+C_{I / O}\right) \times \frac{\Delta V_{O U T}}{\Delta t}=\left(C_{L}+C_{/ / O}\right) \times \frac{(80 \%-20 \%) \bullet V_{C C O}}{t_{F A L L}}
$$

Figure 8. Active Output Fall Time and Dynamic Output Current Low

Figure 9. Maximum Data Rate

Figure 10.Output Skew Time

Note:

Physical Dimensions

Figure 11.8-Lead, MicroPak ${ }^{\text {TM }}, 1.6 \mathrm{~mm}$ Wide

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ONSemiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee reg arding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

 LITERATURE FULFILLMENT:Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax : 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. Amer ic an Technical Support: 800-282-9855 Toll Free USA/Canada.
Europe, Middle East and Afr ica Technical Support: Order Literature: http://www.onsemi.com/orderlit Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semic onductor Website: www.onsemi.com

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

