ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

FXLA₁₀₄

Low-Voltage Dual-Supply 4-Bit Voltage Translator with Configurable Voltage Supplies and Signal Levels, 3-State Outputs, and Auto Direction Sensing

Features

- Bi-Directional Interface between Two Levels: from 1.1V to 3.6V
- Fully Configurable: Inputs and Outputs Track V_{CC}
- Non-Preferential Power-Up; Either V_{CC} May Be Powered Up First
- Outputs Switch to 3-State if Either V_{CC} is at GND
- Power-Off Protection
- Bus-Hold on Data Inputs Eliminates the Need for Pull-Up Resistors; Do Not Use Pull-Up Resistors on A or B Ports
- Control Input (/OE) Referenced to V_{CCA} Voltage
- Available in 16-Terminal UMLP (1.8mm x 2.6mm) and 12-Terminal, Quad UMLP, 1.8 x 1.8mm Packages
- Direction Control Not Necessary
- 100Mbps Throughput when Translating Between 1.8V and 2.5V
- ESD Protection Exceeds:
 - 8kV HBM (per JESD22-A114 & Mil Std 883e 3015.7)
 - 2kV CDM (per ESD STM 5.3)

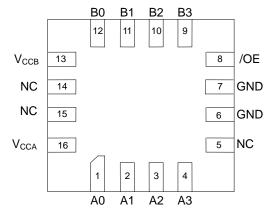
Applications

Cell Phone, PDA, Digital Camera, Portable GPS

Description

The FXLA104 is a configurable dual-voltage supply translator for both uni-directional and bi-directional voltage translation between two logic levels. The device allows translation between voltages as high as 3.6V to as low as 1.1V. The A port tracks the $V_{\rm CCA}$ level and the B port tracks the $V_{\rm CCB}$ level. This allows for bi-directional voltage translation over a variety of voltage levels: 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.

The device remains in three-state as long as either V_{CC} =0V, allowing either V_{CC} to be powered up first. Internal power-down control circuits place the device in 3-state if either V_{CC} is removed.


The /OE input, when HIGH, disables both the A and B ports by placing them in a 3-state condition. The /OE input is supplied by $V_{\rm CCA}$.

The FXLA104 supports bi-directional translation without the need for a direction control pin. The two ports of the device have auto-direction sense capability. Either port may sense an input signal and transfer it as an output signal to the other port.

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FXLA104UMX	-40 to 85°C	XJ	16-Terminal UMLP 1.8 x 2.6mm Package	5K Units Tape
FXLA104UM12X	-40 to 65 C	XJ	12-Terminal, Quad UMLP, 1.8 x 1.8mm Package	and Reel

Pin Configuration

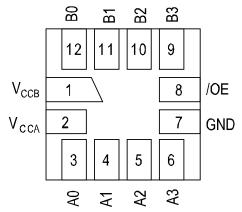


Figure 2. 12-Pin UMLP (Top Through View)

Pin Definitions

16 Pin #	12 Pin #	Name	Description
1	3	A0	A-Side Inputs or 3-State Outputs
2	4	A1	A-Side Inputs or 3-State Outputs
3	5	A2	A-Side Inputs or 3-State Outputs
4	6	A3	A-Side Inputs or 3-State Outputs
5		NC	No Connect
6,7	7	GND	Ground
8	8	/OE	Output Enable Input
9	9	В3	B-Side Inputs or 3-State Outputs
10	10	B2	B-Side Inputs or 3-State Outputs
11	11	B1	B-Side Inputs or 3-State Outputs
12	12	В0	B-Side Inputs or 3-State Outputs
13	1	V _{CCB}	B-Side Power Supply
14,15		NC	No Connect
16	2	V _{CCA}	A-Side Power Supply

Functional Diagram

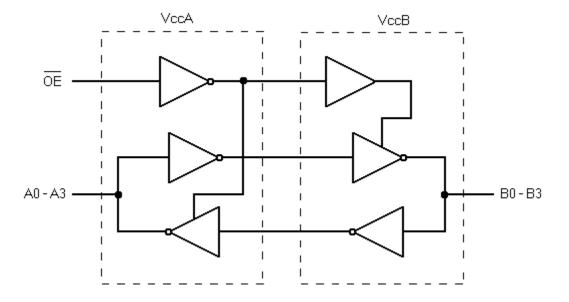


Figure 3. Functional Diagram

Function Table

Control	Outputs
/OE	Outputs
LOW Logic Level	Normal Operation
HIGH Logic Level	3-State

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V	Cumply Voltage	V _{CCA}	-0.5	4.6	V
V_{CC}	Supply Voltage	V _{CCB}	-0.5	4.6	V
\/	DC Input Voltage	I/O Ports A and B		4.6	V
Vı	DC Input Voltage	Control Input (/OE)	-0.5	4.6	V
		Output 3-State	-0.5	4.6	
V_{O}	Output Voltage ⁽²⁾	Output Active (A _n)	-0.5	V _{CCA} +0.5	V
		Output Active (B _n)	-0.5	V _{CCB} +0.5	
I _{IK}	DC Input Diode Current	V _{IN} <0V		-50	mA
1	DC Output Diada Current	V _O <0V		-50	mA
I _{OK}	DC Output Diode Current	Vo>Vcc		+50	IIIA
I_{OH}/I_{OL}	DC Output Source/Sink Curre	nt	-50	+50	mA
Icc	DC V _{CC} or Ground Current (pe	er Supply Pin)		±100	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
P_D	Power Dissipation			17	mW
ESD	Electrostatic Discharge	Human Body Model (per JESD22- A114 & Mil Std 883e 3015.7)		8	kV
E2D	Capability	Charged Device Model (per ESD STM 5.3)		2	ĸV

Notes:

- 1. I_O absolute maximum ratings must be observed.
- 2. All unused inputs and input/outputs must be held at V_{CCi} or GND.

Symbol	Parameter	Conditions	Min.	Max.	Unit
Vcc	Power Supply	Operating V _{CCA} or V _{CCB}	1.1	3.6	V
\/	Innut Valtage	Ports A and B	0	3.6	V
V_{IN}	Input Voltage	Control Input (/OE)	0	V _{CCA}	V
T _A	Operating Temperature, Free Air		-40	+85	°C
dt/dV	Minimum Input Edge Rate	$V_{CCA/B} = 1.1 \text{ to } 3.6V$		10	ns/V
0	Thermal Resistance:	UMLP-16		315	°C/W
Θ_{JA}	Junction-to-Ambient	UMLP-12		300	-0/00
0	Thermal Resistance:	UMLP-16		155	°C/W
$\Theta_{\sf JC}$	Junction-to-Case	UMLP-12		165	C/VV

Power-Up/Power-Down Sequence

FXL translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0V, outputs are in a high-impedance state. The control input (/OE) is designed to track the V_{CCA} supply. A pull-up resistor tying /OE to V_{CCA} should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up or power-down. The size of the pull-up resistor is based upon the current-sinking capability of the device driving the /OE pin.

The recommended power-up sequence is:

- 1. Apply power to the first V_{CC} .
- 2. Apply power to the second V_{CC} .
- 3. Drive the /OE input LOW to enable the device.

The recommended power-down sequence is:

- 1. Drive /OE input HIGH to disable the device.
- 2. Remove power from either V_{CC} .
- 3. Remove power from other V_{CC}.

Pull-Up/Pull-Down Resistors

<u>Do not use pull-up or pull-down resistors</u>. This device has bus-hold circuits: pull-up or pull-down resistors are not recommended because they interfere with the output state. The current through these resistors may exceed the hold drive, $I_{I(HOLD)}$ and/or $I_{I(OD)}$ bus-hold currents, resulting in data transition and/or auto-direction sensing failures. The bus-hold feature eliminates the need for extra resistors.

DC Electrical Characteristics

 $T_A=-40$ to $85^{\circ}C$

Symbol	Parameter	Conditions	V _{CCA} (V)	V _{CCB} (V)	Min.	Тур.	Max.	Units	
			2.70 to 3.60		2.00				
			2.30 to 2.70		1.60				
V_{IHA}		Data Inputs A _n Control Pin /OE	1.65 to 2.30	1.10 to 3.60	.65xV _{CCA}			V	
		001111011111702	1.40 to 1.65		.65xV _{CCA}				
	High-Level Input Voltage		1.10 to 1.40		$.90xV_{CCA}$				
	nigii-Levei iliput voitage			2.70 to 3.60	2.00				
				2.30 to 2.70	1.60				
V_{IHB}		Data Inputs B _n	1.10 to 3.60	1.65 to 2.30	$.65 x V_{CCB}$			V	
				1.40 to 1.65	$.65 \text{xV}_{\text{CCB}}$				
				1.10 to 1.40	$.90xV_{CCB}$				
			2.70 to 3.60				.80		
			2.30 to 2.70				.70		
V_{ILA}		Data Inputs A _n Control Pin /OE	1.65 to 2.30	1.10 to 3.60			.35xV _{CCA}	V	
		001111011111702	1.40 to 1.65				$.35 x V_{CCA}$		
	Low-Level Input Voltage		1.10 to 1.40				.10xV _{CCA}		
	Low-Level input voltage			2.70 to 3.60			.80		
			H	2.30 to 2.70			.70		
V_{ILB}		Data Inputs B _n		1.65 to 2.30			.35xV _{CCB}	V	
					1.40 to 1.65			.35xV _{CCB}	
				1.10 to 1.40			.10xV _{CCB}		
V_{OHA}	High-Level Output	I _{OH} =-4μA	1.10 to 3.60	1.10 to 3.60	V _{CCA} 4			V	
V_{OHB}	Voltage ⁽³⁾	I _{OH} =-4μA	1.10 to 3.60	1.10 to 3.60	V _{CCB} 4			V	
V_{OLA}	Low-Level Output	I _{OL} =4μA	1.10 to 3.60	1.10 to 3.60			.4	V	
V_{OLB}	Voltage ⁽³⁾	I _{OL} =4μA	1.10 to 3.60	1.10 to 3.60			.4	V	
		V _{IN} =0.8V	3.00	3.00	75.0				
		V _{IN} =2.0V	3.00	3.00	-75.0				
		V _{IN} =0.7V	2.30	2.30	45.0				
		V _{IN} =1.6V	2.30	2.30	-45.0				
l	Bus-Hold Input Minimum	V _{IN} =0.57V	1.65	1.65	25.0				
I _{I(HOLD)}	Drive Current	V _{IN} =1.07V	1.65	1.65	-25.0			μA	
		V _{IN} =0.49V	1.40	1.40	11.0				
		V _{IN} =0.91V	1.40	1.40	-11.0				
		V _{IN} =0.11V	1.10	1.10		4.0			
		V _{IN} =0.99V	1.10	1.10		-4.0			

Note:

3. This is the output voltage for static conditions. Dynamic drive specifications are given in the Dynamic Output Electrical Characteristics table.

Continued on following page...

DC Electrical Characteristics (Continued)

 T_A =-40 to 85°C.

Symbol	Parameter	Conditions	V _{CCA} (V)	V _{CCB} (V)	Min.	Max.	Units
			3.60	3.60	450.0		
	Bus-Hold Input		2.70	2.70	300.0		
$I_{I(ODH)}$	Overdrive High	Data Inputs A _n , B _n	1.95	1.95	200.0		μΑ
	Current ⁽⁴⁾		1.60	1.60	120.0		
			1.40	1.40	80.0		
			3.60	3.60	-450.0		
	Bus-Hold Input		2.70	2.70	-300.0		
$I_{I(ODL)}$	Overdrive Low	Data Inputs A _n , B _n	1.95	1.95	-200.0		μΑ
	Current ⁽⁵⁾		1.60	1.60	-120.0		
			1.40	1.40	-80.0		
l _l	Input Leakage Current	Control Inputs /OE, V _I =V _{CCA} or GND	1.10 to 3.60	3.60		±1.0	μА
	Power-Off Leakage	A _n V _O =0V to 3.6V	0	3.60		±2.0	
I _{OFF}	Current	B _n V _O =0V to 3.6V	3.60	0		±2.0	μA
		A_n , B_n V_O =0V or 3.6V, $/OE$ = V_{IH}	3.60	3.60		±5.0	
l _{OZ}	3-State Output Leakage	A _n V _O =0V or 3.6V, /OE=GND	3.60	0		±5.0	μA
		B _n V _O =0V or 3.6V, /OE=GND	0	3.60		±5.0	
I _{CCA/B}	Quiescent Supply Current ^(6, 7)	V _I =V _{CCI} or GND; I _O =0, /OE=GND	1.10 to 3.60	1.10 to 3.60		10.0	μA
I _{CCZ}	Current ^(6, 7)	$V_I=V_{CCI}$ or GND; $I_O=0$, $/OE=V_{IH}$	1.10 to 3.60	1.10 to 3.60		10.0	μA
I _{CCA}		V _I =V _{CCB} or GND; I _O =0 B-to-A Direction, /OE=GND	0	1.10 to 3.60		-10.0	μA
	Quiescent Supply	V _I =V _{CCA} or GND; I _O =0 A-to-B Direction	1.10 to 3.60	0		10.0	
I _{CCB}	Current	V _I =V _{CCA} or GND; I _O =0, A-to-B Direction, /OE=GND	1.10 to 3.60	0		-10.0	μA
		V _I =V _{CCB} or GND; I _O =0 B-to-A Direction	0	1.10 to 3.60		10.0	

Notes:

- 4. An external drive must source at least the specified current to switch LOW-to-HIGH.
- 5. An external drive must source at least the specified current to switch HIGH-to-LOW.
- 6. V_{CCI} is the V_{CC} associated with the input side.
- 7. Reflects current per supply, V_{CCA} or V_{CCB} .

Dynamic Output Electrical Characteristic

A Port (A_n)

Output Load: C_L =15pF, $R_L \ge M\Omega$ ($C_{I/O}$ =4pF), T_A =-40 to 85°C

Symbol	Parameter	V _{CCA} =3.0V to 3.6V		V _{CCA} =2.3V to 2.7V		V _{CCA} =1.65V to 1.95V			=1.4V I.6V	V _{CCA} =1.1V to 1.3V	Units
		Тур.	Max.	Тур.	Max.	Тур.	Max	Тур.	Max.	Тур.	
t _{rise}	Output Rise Time A Port ⁽⁹⁾		3.0		3.5		4.0		5.0	7.5	ns
t _{fall}	Output Fall Time A Port ⁽¹⁰⁾		3.0		3.5		4.0		5.0	7.5	ns
I _{OHD}	Dynamic Output Current High ⁽⁹⁾	-11.4		-7.5		-4.7		-3.2		-1.7	mA
l _{OLD}	Dynamic Output Current Low ⁽¹⁰⁾	+11.4		+7.5		+4.7		+3.2		+1.7	mA

B Port (B_n)

Output Load: $C_L=15pF$, $R_L \ge M\Omega$ ($C_{I/O}=5pF$), $T_A=-40$ to $85^{\circ}C$

Symbol	Parameter	V _{CCB} =3.0V to 3.6V		V _{CCB} =2.3V to 2.7V		V _{CCB} =1.65V to 1.95V			=1.4V .6V	V _{CCB} =1.1V to 1.3V	Units
		Тур.	Max.	Тур.	Max.	Тур.	Max	Тур.	Max.	Тур.	
t _{rise}	Output Rise Time B Port ⁽⁹⁾		3.0		3.5		4.0		5.0	7.5	ns
t _{fall}	Output Fall Time B Port ⁽¹⁰⁾		3.0		3.5		4.0		5.0	7.5	ns
I _{OHD}	Dynamic Output Current High ⁽⁹⁾	-12.0		-7.9		-5.0		-3.4		-1.8	mA
I _{OLD}	Dynamic Output Current Low ⁽¹⁰⁾	+12.0		+7.9		+5.0		+3.4		+1.8	mA

Notes:

- 8. Dynamic output characteristics are guaranteed, but not tested.
- 9. See Figure 8.10. See Figure 9.

AC Characteristics

$V_{CCA} = 3.0V$ to 3.6V, $T_A = -40$ to 85°C

Symbol	Parameter	V _{CCB} =3.0V to 3.6V		V _{CCB} =2.3V to 2.7V		V _{CCB} =1.65V to 1.95V			=1.4V .6V	V _{CCB} =1.1V to 1.3V	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Тур.	
	A to B	0.2	4.0	0.3	4.2	0.5	5.4	0.6	6.8	6.9	ns
t _{PLH} ,t _{PHL}	B to A	0.2	4.0	0.2	4.1	0.3	5.0	0.5	6.0	4.5	ns
t _{PZL} ,t _{PZH}	/OE to A, /OE to B		1.7		1.7		1.7		1.7	1.7	μs
t _{SKEW}	A Port, B Port ⁽¹¹⁾		0.5		0.5		0.5		1.0	1.0	ns

V_{CCA} = 2.3V to 2.7V, T_A =-40 to 85°C

Symbol	Parameter	V _{CCB} =3.0V to 3.6V		V _{CCB} =2.3V to 2.7V		V _{CCB} =1.65V to 1.95V			=1.4V .6V	V _{CCB} =1.1V to 1.3V	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Тур.	
	A to B	0.2	4.1	0.4	4.5	0.5	5.6	0.8	6.9	7.0	ns
t _{PLH} ,t _{PHL}	B to A	0.3	4.2	0.4	4.5	0.5	5.5	0.5	6.5	4.8	ns
t _{PZL} ,t _{PZH}	/OE to A, /OE to B		1.7		1.7		1.7		1.7	1.7	μs
t _{SKEW}	A Port, B Port ⁽¹¹⁾		0.5		0.5		0.5		1.0	1.0	ns

$V_{CCA} = 1.65V$ to 1.95V, $T_A = -40$ to 85°C

Symbol	Parameter	V _{CCB} =3.0V to 3.6V		V _{CCB} =2.3V to 2.7V		V _{CCB} =1.65V to 1.95V		V _{CCB} =	=1.4V .6V	V _{CCB} =1.1V to 1.3V	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Тур.	
	A to B	0.3	5.0	0.5	5.5	0.8	6.7	0.9	7.5	7.5	ns
t _{PLH} ,t _{PHL}	B to A	0.5	5.4	0.5	5.6	0.8	6.7	1.0	7.0	5.4	ns
t _{PZL} ,t _{PZH}	/OE to A, /OE to B		1.7		1.7		1.7		1.7	1.7	μs
t _{SKEW}	A Port, B Port ⁽¹¹⁾		0.5		0.5		0.5		1.0	1.0	ns

Note:

11. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 11). Skew is guaranteed, but not tested.

AC Characteristics (Continued)

V_{CC} =1.4V to 1.6V, T_A =-40 to 85°C

Symbol	Parameter	V _{CCB} =3.0V to 3.6V		V _{CCB} =2.3V to 2.7V		V _{CCB} =1.65V to 1.95V		V _{CCB} =1.4V to 1.6V		V _{CCB} =1.1V to 1.3V	Units
		Min.	Max.	Min.	Max.	Min.	Max	Min.	Max.	Тур.	
t _{PLH} ,t _{PHL}	A to B	0.5	6.0	0.5	6.5	1.0	7.0	1.0	8.5	7.9	ns
	B to A	0.6	6.8	0.8	6.9	0.9	7.5	1.0	8.5	6.1	ns
t _{PZL} ,t _{PZH}	/OE to A, /OE to B		1.7		1.7		1.7		1.7	1.7	μs
t _{SKEW}	A Port, B Port ⁽¹²⁾		1.0		1.0		1.0		1.0	1.0	ns

V_{CCA} =1.1V to 1.3V, T_A =-40 to 85°C

Symbol	Parameter	V _{CCB} =3.0V to 3.6V Typ.	V _{CCB} =2.3V to 2.7V Typ.	V _{CCB} =1.65V to 1.95V Typ.	V _{CCB} =1.4V to 1.6V Typ.	V _{CCB} =1.1V to 1.3V Typ.	Units
	A to B	4.6	4.8	5.4	6.2	9.2	ns
t _{PLH} ,t _{PHL}	B to A	6.8	7.0	7.4	7.8	9.1	ns
t _{PZL} ,t _{PZH}	/OE to A, /OE to B	1.7	1.7	1.7	1.7	1.7	μs
t _{SKEW}	A Port, B Port ⁽¹²⁾	1.0	1.0	1.0	1.0	1.0	ns

Note:

^{12.} Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 11). Skew is guaranteed, but not tested.

Maximum Data Rate^(13, 14)

T_A=-40 to 85°C

V _{CCA}	V _{CCB} =3.0V to 3.6V	V _{CCB} =2.3V to 2.7V	V _{CCB} =1.65V to 1.95V	V _{CCB} =1.4V to 1.6V	V _{CCB} =1.1V to 1.3V	Units
	Min.	Min.	Min.	Min.	Тур.	
V _{CCA} =3.00V to 3.60V	140	120	100	80	40	Mbps
V _{CCA} =2.30V to 2.70V	120	120	100	80	40	Mbps
V _{CCA} =1.65V to 1.95V	100	100	80	60	40	Mbps
V _{CCA} =1.40V to 1.60V	80	80	60	60	40	Mbps
V _{CCA} =1.10V to 1.30V	Тур.	Тур.	Тур.	Тур.	Тур.	
VCCA=1.10V to 1.30V	40	40	40	40	40	Mbps

Notes:

- 13. Maximum data rate is guaranteed, but not tested.
- 14. Maximum data rate is specified in megabits per second (see Figure 10). It is equivalent to two times the F-toggle frequency, specified in megahertz. For example, 100Mbps is equivalent to 50MHz.

Capacitance

Symbol	Parameter		Conditions	T _A =+25°C Typical	Units
C _{IN}	Input Capacitance Control Pin (/OE)		V _{CCA} =V _{CCB} =GND	3	рF
C _{I/O}	Innut/Output Conscitous	An	V V 2.2V /OF V	4	~ F
	Input/Output Capacitance B _n		V _{CCA} =V _{CCB} =3.3V, /OE=V _{CCA}	5	pF
C _{pd}	Power Dissipation Capacita	ince	V _{CCA} =V _{CCB} =3.3V, V _I =0V or V _{CC} , f=10MHz	25	pF

I/O Architecture Benefit

The FXLA104 I/O architecture benefits the end user, beyond level translation, in the following three ways:

Auto Direction without an external direction pin.

Drive Capacitive Loads. Automatically shifts to a higher current drive mode only during "Dynamic Mode" or HL / LH transitions.

Lower Power Consumption. Automatically shifts to low-power mode during "Static Mode" (no transitions), lowering power consumption.

The FXLA104 does not require a direction pin. Instead, the I/O architecture detects input transitions on both side and automatically transfers the data to the corresponding output. For example, for a given channel, if both A and B side are at a static LOW, the direction has been established as A \rightarrow B, and a LH transition occurs on the B port; the FXLA104 internal I/O architecture automatically changes direction from A \rightarrow B to B \rightarrow A.

During HL / LH transitions, or "Dynamic Mode," a strong output driver drives the output channel in parallel with a weak output driver. After a typical delay of approximately 10ns – 50ns, the strong driver is turned off, leaving the weak driver enabled for holding the logic state of the channel. This weak driver is called the "bus

hold." "Static Mode" is when only the bus hold drives the channel. The bus hold can be over ridden in the event of a direction change. The strong driver allows the FXLA104 to quickly charge and discharge capacitive transmission lines during dynamic mode. Static mode conserves power, where $I_{\rm CC}$ is typically < 5μ A.

Bus Hold Minimum Drive Current

Specifies the minimum amount of current the bus hold driver can source/sink. The bus hold minimum drive current (II_{HOLD}) is V_{CC} dependent and guaranteed in the DC Electrical tables. The intent is to maintain a valid output state in a static mode, but that can be overridden when an input data transition occurs.

Bus Hold Input Overdrive Drive Current

Specifies the minimum amount of current required (by an external device) to overdrive the bus hold in the event of a direction change. The bus hold overdrive (II_{ODH} , II_{ODL}) is V_{CC} dependent and guaranteed in the DC Electrical tables.

Dynamic Output Current

The strength of the output driver during LH / HL transitions is referenced on page 8, Dynamic Output Electrical Characteristics, I_{OHD} , and I_{OLD} .

Test Diagrams

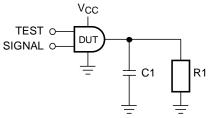


Figure 4. Test Circuit

Table 1. AC Test Conditions

Test	Input Signal	Output Enable Control
t _{PLH} , t _{PHL}	Data Pulses	0V
t _{PZL}	0V	HIGH to LOW Switch
t _{PZH}	V _{cci}	HIGH to LOW Switch

Table 2. AC Load

V _{cco}	C1	R1
1.2V± 0.1V	15pF	1ΜΩ
1.5V± 0.1V	15pF	1ΜΩ
1.8V ± 0.15V	15pF	1ΜΩ
2.5V ± 0.2V	15pF	1ΜΩ
3.3V ± 0.3V	15pF	1ΜΩ

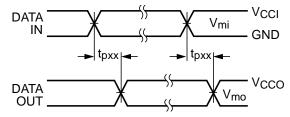


Figure 5. Waveform for Inverting and Non-Inverting Functions

Notas:

- 15. Input $t_R = t_F = 2.0$ ns, 10% to 90%.
- 16. Input $t_R = t_F = 2.5$ ns, 10% to 90%, at $V_I = 3.0$ V to 3.6V only.

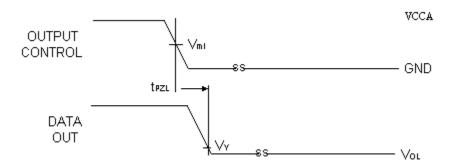


Figure 6. 3-State Output Low Enable Time for Low Voltage Logic

Notes

- 17. Input $t_R = t_F = 2.0$ ns, 10% to 90%.
- 18. Input $t_R = t_F = 2.5$ ns, 10% to 90%, at $V_I = 3.0$ V to 3.6V only.

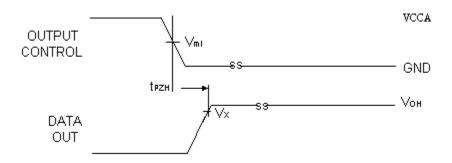


Figure 7. 3-State Output High Enable Time for Low Voltage Logic

Notes:

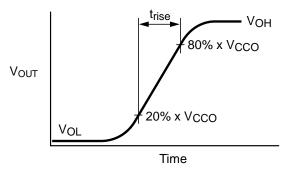
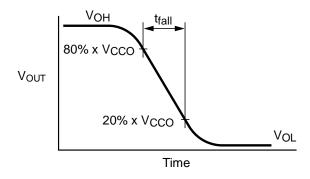

- 19. Input $t_R = t_F = 2.0$ ns, 10% to 90%.
- 20. Input $t_R = t_F = 2.5$ ns, 10% to 90%, at $V_I = 3.0$ V to 3.6V only.

Table 3. Test Measure Points

Symbol	V_{DD}
V _{MI} ⁽²¹⁾	V _{CCI} /2
V_{MO}	V _{CCo} /2
V _X	0.9 x V _{CCo}
V _Y	0.1 x V _{CCo}


Note:

21. $V_{CCI}=V_{CCA}$ for control pin /OE or $V_{MI}(V_{CCA}/2)$.

$$I_{OHD} \approx (C_L + C_{I/O}) \times \frac{\Delta V_{OUT}}{\Delta t} = (C_L + C_{I/O}) \times \frac{(20\% - 80\%) \bullet V_{CCO}}{t_{RISE}}$$

Figure 8. Active Output Rise Time and Dynamic Output Current High

$$I_{OLD} \approx (C_L + C_{I/O}) \times \frac{\Delta V_{OUT}}{\Delta t} = (C_L + C_{I/O}) \times \frac{(80\% - 20\%) \bullet V_{CCO}}{t_{FALL}}$$

Figure 9. Active Output Fall Time and Dynamic Output Current Low

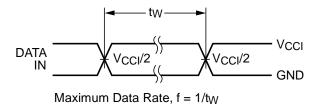


Figure 10. Maximum Data Rate

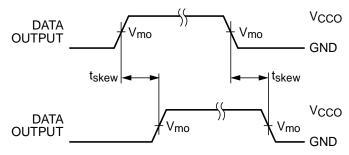
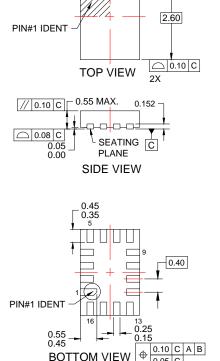



Figure 11.Output Skew Time

Note:

22.
$$t_{SKEW} = (t_{pHLmax} - t_{pHLmin})$$
 or $(t_{pLHmax} - t_{pLHmin})$

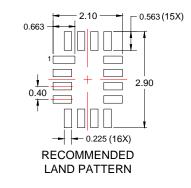
Physical Dimensions

1.80

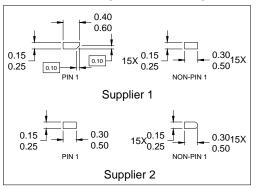
○ 0.10 C

2X

NOTES:


A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.

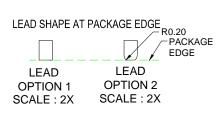
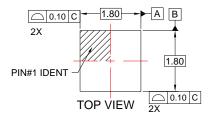
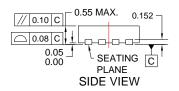
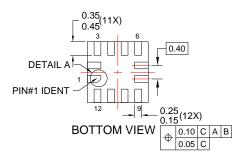
0.05 C

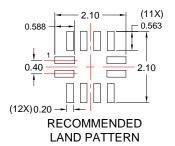

B. DIMENSIONS ARE IN MILLIMETERS.

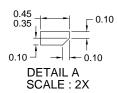
BOTTOM VIEW

- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.
- E. DRAWING FILENAME: MKT-UMLP16Arev4.
- F. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

TERMINAL SHAPE VARIANTS


Figure 12.16-Lead, UMLP, QUAD, Ultra-Thin MLP, 1.8 X 2.6mm


Physical Dimensions

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.
- E. DRAWING FILENAME: MKT-UMLP12Arev4.

PACKAGE EDGE

LEAD LEAD

OPTION 1 OPTION 2

SCALE: 2X SCALE: 2X

Figure 13.12-Lead, UMLP, QUAD, JEDEC MO-252 1.8 x 1.8mm Package

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG
NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG
MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG
74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG
MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G
NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G
LTC1045CSW#PBF LTC1045CN#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE
ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7
ADG32233BRMZ