

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FXLP34

Single Bit Uni－Directional Translator

Features

－ 1.0 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{Cc}}$ Supply Voltage
－Converts Any Voltage（ 1.0 V to 3.6 V ）to （1．0V to 3．6V）
－4．6V Tolerant Inputs and Outputs
－$t_{\text {PD }}$ ：
－4ns Typical for 3.0 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$
－Power－Off High Impedance Inputs and Outputs
－Static Drive（ $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ ）：
$- \pm 2.6 \mathrm{~mA}$ at $3.00 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$
－Uses Proprietary Quiet Series ${ }^{\text {M }}$ Noise／EMI Reduction Circuitry
－Ultra－Small Micropak ${ }^{\text {TM }}$ Leadless Packages
－Ultra－Low Dynamic Power

Description

The FXLP34 is a single translator with two separate supply voltages： $\mathrm{V}_{\mathrm{CC} 1}$ for input translation voltages and V_{CC} for output translation voltages．The FXLP34 is part of Fairchild＇s Ultra Low Power（ULP）series of products． This device operates with VCC values from 1.0 V to 3.6 V ，and is intended for use in portable applications that require ultra low power consumption．
The internal circuit is composed of a minimum of buffer stages，to enable ultra low dynamic power．

The FXLP34 is uniquely designed for optimized power and speed，and is fabricated with an advanced CMOS technology to achieve high－speed operation while maintaining low CMOS power dissipation．

Ordering Information

Part Number	Top Mark	Package	Packing Method
FXLP34P5X	X34	5－Lead SC70，EIAJ SC－88a，1．25mm Wide	3000 Units on Tape \＆Reel
FXLP34L6X	X3	6－Lead MicroPak ${ }^{\text {TM }}, 1.00 \mathrm{~mm}$ Wide	5000 Units on Tape \＆Reel
FXLP34FHX	X3	6－Lead，MicroPak2， $1 \times 1 \mathrm{~mm}$ Body，．35mm Pitch	5000 Units on Tape \＆Reel

Micropak ${ }^{\text {TM }}$ and Quiet Series ${ }^{\text {TM }}$ are trademarks of Fairchild Semiconductor Corporation．

Pin Configuration

Figure 1. SC70 (Top View)

Figure 2. MicroPak ${ }^{\text {TM }}$ (Top Through View)

Pin Definitions

Pin \# SC70	Pin \# MicroPak		
M	Name	Description	
1	1	$\mathrm{~V}_{\mathrm{CC} 1}$	Input Translation Voltage
2	2	A	Input
3	3	GND	Ground
4	4	Y	Output
	5	NC	No Connect
5	6	$\mathrm{~V}_{\mathrm{CC}}$	Output Translation Voltage

Truth Table

Inputs	Outputs
\mathbf{A}	\mathbf{Y}
L	L
H	H

H = Logic Level HIGH
L = Logic Level Low

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC} 1}$	Supply Voltage		-0.5	+4.6	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		-0.5	+4.6	V
$V_{\text {OUT }}$	DC Output Voltage	HIGH or LOW State ${ }^{(1)}$	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V
		$\mathrm{V}_{\mathrm{Cc}}=0 \mathrm{~V}$	-0.5	+4.6	
I_{K}	DC Input Diode Current	$\mathrm{V}_{\text {IN }}<0$		-50	mA
l_{OK}	DC Output Diode Current	$\mathrm{V}_{\text {OUT }}<0 \mathrm{~V}$		-50	mA
		$\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {CC }}$		+50	
$\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	DC Output Source/Sink Current			± 50	mA
I_{CC} or $\mathrm{I}_{\text {GND }}$	DC V ${ }_{\text {cc }}$ or Ground Current per Supply Pin			± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	150	${ }^{\circ} \mathrm{C}$
$P_{\text {D }}$	Power Dissipation at $+85^{\circ} \mathrm{C}$	SC70-6		180	mW
		MicroPak ${ }^{\text {TM }}$-6		130	
		MicroPak2 ${ }^{\text {™ }}$-6		120	
ESD	Human Body Model, JEDEC:JESD22-A114			4000	V
	Charge Device Model, JEDEC:JESD22-C101			2000	

Note:

1. I_{0} Absolute Maximum Rating must be observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC} 1}$	Supply Voltage		1.0	3.6	V
$\mathrm{V}_{\text {IN }}$	Input Voltage		0	3.6	V
$V_{\text {OUT }}$	Output Voltage	HIGH or LOW State	0	V_{cc}	V
		$\mathrm{V}_{\mathrm{Cc}}=0 \mathrm{~V}$	0	3.6	
$\mathrm{l} \mathrm{OH} / \mathrm{l}_{\mathrm{OL}}$	Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$	$\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V		± 2.6	mA
		$\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V		± 2.1	
		$\mathrm{V}_{\mathrm{cc}}=1.65$ to 1.95 V		± 1.5	
		$\mathrm{V}_{\mathrm{CC}}=1.40$ to 1.60 V		± 1.0	
		$\mathrm{V}_{\mathrm{CC}}=1.10$ to 1.30 V		± 0.5	
		$\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$		± 20	$\mu \mathrm{A}$
$\mathrm{T}_{\text {A }}$	Operating Temperature, Free Air		-40	+85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance	SC70-6		425	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		MicroPak ${ }^{\text {TM }}$-6		500	
		MicroPak2 ${ }^{\text {TM }}$-6		560	

Note:

2. Unused inputs must be held HIGH or LOW. They may not float.

Electrical Characteristics

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{CC1}}$ (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
					Min.	Max.	Min.	Max.	
V_{H}	HIGH Level Input ($\mathrm{V}_{\mathrm{cc} 1}$)		1.0 to 3.6	1.0	$0.65 \times \mathrm{V}_{\text {clı }}$		$0.65 \times \mathrm{V}_{\text {cl }}$		v
				$1.10 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.30$	$0.65 \times \mathrm{V}_{\text {clı }}$		$0.65 \times \mathrm{V}_{\text {cl }}$		
				$1.40 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.60$	$0.65 \times \mathrm{V}_{\text {cl }}$		$0.65 \times \mathrm{V}_{\text {cl }}$		
				$1.65 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.95$	$0.65 \times \mathrm{V}_{\text {cll }}$		$0.65 \times \mathrm{V}_{\mathrm{ccI}}$		
				$2.30 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 2.70$	1.6		1.6		
				$3.00 \leq \mathrm{V}_{\mathrm{CC1}} \leq 3.60$	2.1		2.1		
$\mathrm{V}_{\text {IL }}$	LOW Level Input		1.0 to 3.6	1.0		$0.35 \times \mathrm{V}_{\text {clı }}$		$0.35 \times \mathrm{V}_{\text {cl }}$	V
				$1.10 \leq \mathrm{V}_{\mathrm{cc} 1} \leq 1.30$		$0.35 \times \mathrm{V}_{\text {clı }}$		$0.35 \times \mathrm{V}_{\text {cl }}$	
				$1.40 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.60$		$0.35 \times \mathrm{V}_{\text {clı }}$		$0.35 \times \mathrm{V}_{\text {cl }}$	
				$1.65 \leq \mathrm{V}_{\mathrm{cc} 1} \leq 1.95$		$0.35 \times \mathrm{V}_{\text {clı }}$		$0.35 \times \mathrm{V}_{\text {cl }}$	
				$2.30 \leq \mathrm{V}_{\mathrm{CC1} 1} \leq 2.70$		0.7		0.7	
				$3.00 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 3.60$		0.9		0.9	
V_{OH}	HIGH Level Output (VCc)	$\mathrm{IOH}_{\mathrm{H}}=-20 \mu \mathrm{~A}$	1.0	1.0 to 3.6	$\mathrm{V}_{\mathrm{cc}-} 0.1$		$\mathrm{V}_{\mathrm{cc}}-0.1$		v
			$1.10 \leq \mathrm{V}_{\mathrm{cc} 1} \leq 1.30$		$\mathrm{V}_{\mathrm{cc}}-0.1$		$\mathrm{V}_{\mathrm{cc}}-0.1$		
			$1.40 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.60$		$\mathrm{V}_{\mathrm{cc}}-0.1$		$\mathrm{V}_{\mathrm{cc}}-0.1$		
			$1.65 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.95$		$\mathrm{V}_{\mathrm{cc}}-0.1$		$\mathrm{V}_{\mathrm{cc}}-0.1$		
			$2.30 \leq \mathrm{V}_{\mathrm{CC1}} \leq 2.70$		$\mathrm{V}_{\mathrm{cc}}-0.1$		$\mathrm{V}_{\mathrm{cc}}-0.1$		
			$3.00 \leq \mathrm{V}_{\mathrm{CC1}} \leq 3.60$		$\mathrm{V}_{\mathrm{cc}}-0.1$		$\mathrm{V}_{\mathrm{cc}}-0.1$		
		$\mathrm{I}_{\text {OH }}=-0.5 \mathrm{~mA}$	$1.10 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.30$	1.0 to 3.6	$0.75 \times V_{\text {cc }}$		$0.70 \times V_{\text {cc }}$		
		$\mathrm{IOH}^{\text {}}=-1.0 \mathrm{~mA}$	$1.40 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.60$		1.07		0.99		
		$\mathrm{l}_{\text {OH }}=-1.5 \mathrm{~mA}$	$1.65 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.95$		1.24		1.22		
		$\mathrm{l}_{\text {OH }}=-2.1 \mathrm{~mA}$	$2.30 \leq V_{C C 1} \leq 2.70$		1.95		1.87		
		$\mathrm{l}_{\text {OH }}=-2.6 \mathrm{~mA}$	$3.00 \leq \mathrm{V}_{\mathrm{CC1}} \leq 3.60$		2.61		2.55		
VoL	LOW Level Output	$1 \mathrm{lo}=20 \mu \mathrm{~A}$	1.0	1.0 to 3.6		0.1		0.1	V
			$1.10 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.30$			0.1		0.1	
			$1.40 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.60$			0.1		0.1	
			$1.65 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.95$			0.1		0.1	
			$2.30 \leq \mathrm{V}_{\mathrm{CC1}} \leq 2.70$			0.1		0.1	
		$\mathrm{l}_{\mathrm{oL}}=0.5 \mathrm{~mA}$	$1.10 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.30$	1.0 to 3.6		$0.30 \times \mathrm{V}_{\mathrm{cc}}$		$0.30 \times \mathrm{V}_{\mathrm{cc}}$	
		$\mathrm{l}_{\mathrm{oL}}=1.0 \mathrm{~mA}$	$1.40 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.60$			0.31		0.37	
		$\mathrm{l}_{\mathrm{oL}}=1.5 \mathrm{~mA}$	$1.65 \leq \mathrm{V}_{\mathrm{CC1}} \leq 1.95$			0.31		0.35	
		$\mathrm{l}_{\mathrm{oL}}=2.1 \mathrm{~mA}$	$2.30 \leq \mathrm{V}_{\mathrm{CC1} 1} \leq 2.70$			0.31		0.33	
		$\mathrm{l}_{\mathrm{oL}}=2.6 \mathrm{~mA}$	$3.00 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 3.60$			0.31		0.33	
$\mathrm{IIN}^{\text {N }}$	Input Leakage Current	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IN}} \\ & \leq 3.60 \end{aligned}$		1.0 to 3.6		± 0.1		± 1.0	$\mu \mathrm{A}$
loff	Power Off Leakage Current	$\begin{aligned} & 0 \leq\left(V_{\mathbb{I N}}, V_{o}\right) \\ & \leq 3.60 \end{aligned}$	0	0		1.0		5.0	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$\begin{aligned} & V_{V_{N}}=V_{\mathrm{CC}} \text { or } \\ & G N D \end{aligned}$	1.0 to 3.6	1.0 to 3.6		0.9		5.0	$\mu \mathrm{A}$

Continued on the following page...

AC Electrical Characteristics

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc1}}(\mathrm{~V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit	Figure
				Min.	Typ.	Max.	Min.	Max.		
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.0$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		26.0				ns	Figure 3, Figure 4
			1.10 to 1.30	15.0	25.0	38.1	12.0	43.3		
			1.40 to 1.60	14.0	24.0	36.7	11.0	42.0		
			1.65 to 1.95	13.0	23.0	36.0	10.0	41.4		
			2.30 to 2.70	12.0	22.0	35.5	9.0	40.9		
			3.00 to 3.60	11.0	21.0	35.5	8.0	40.6		
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.2$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		18.0				ns	Figure 3, Figure 4
			1.10 to 1.30	8.0	15.0	23.2	6.0	41.0		
			1.40 to 1.60	7.5	14.0	21.7	5.5	39.1		
			1.65 to 1.95	7.0	13.0	20.9	5.0	32.3		
			2.30 to 2.70	6.5	12.0	20.4	4.5	29.6		
			3.00 to 3.60	6.0	12.0	20.2	4.0	29.4		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.5$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		14.0				ns	Figure 3, Figure 4
			1.10 to 1.30	5.0	11.0	16.3	4.0	20.6		
			1.40 to 1.60	4.8	10.0	14.8	3.5	19.3		
			1.65 to 1.95	4.5	9.0	14.1	3.0	18.7		
			2.30 to 2.70	4.0	8.0	13.5	2.5	18.0		
			3.00 to 3.60	3.5	8.0	13.3	2.0	17.8		
$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.8$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		13.0				ns	Figure 3, Figure 4
			1.10 to 1.30	4.0	9.0	13.5	3.0	17.5		
			1.40 to 1.60	3.5	8.0	12.0	2.5	16.3		
			1.65 to 1.95	3.0	7.0	11.3	2.0	15.6		
			2.30 to 2.70	2.5	6.0	10.7	1.5	15.0		
			3.00 to 3.60	2.5	6.0	10.5	1.0	14.7		
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=2.5$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		12.0				ns	Figure 3, Figure 4
			1.10 to 1.30	3.0	7.0	10.9	2.5	14.3		
			1.40 to 1.60	2.5	6.0	9.4	2.0	13.1		
			1.65 to 1.95	2.0	5.0	8.6	1.5	11.4		
			2.30 to 2.70	1.5	4.0	8.0	1.0	10.8		
			3.00 to 3.60	1.5	4.0	7.8	1.0	10.5		
$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=3.3$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		11.0				ns	Figure 3, Figure 4
			1.10 to 1.30	3.0	6.0	10.1	2.0	13.8		
			1.40 to 1.60	2.5	5.0	8.2	1.5	10.5		
			1.65 to 1.95	2.0	4.0	7.4	1.0	9.9		
			2.30 to 2.70	1.0	3.0	6.8	1.0	9.2		
			3.00 to 3.60	1.0	3.0	6.6	1.0	9.0		

Continued on the following page...

AC Electrical Characteristics (Continued)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{CC1}}(\mathrm{~V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit	Figure
				Min.	Typ.	Max.	Min.	Max.		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.0$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		28.0				ns	Figure 3, Figure 4
			1.10 to 1.30	16.0	27.0	43.0	12.0	44.8		
			1.40 to 1.60	15.0	26.0	41.6	11.0	43.6		
			1.65 to 1.95	14.0	25.0	40.9	10.0	47.9		
			2.30 to 2.70	13.0	24.0	40.5	9.0	47.5		
			3.00 to 3.60	12.0	23.0	40.4	8.0	41.4		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.2$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		19.0				ns	Figure 3, Figure 4
			1.10 to 1.30	9.0	16.0	24.6	8.0	43.1		
			1.40 to 1.60	8.5	15.0	23.1	7.5	42.2		
			1.65 to 1.95	8.0	14.0	22.4	7.0	31.4		
			2.30 to 2.70	7.5	13.0	21.8	6.5	30.7		
			3.00 to 3.60	7.0	13.0	21.6	6.0	30.5		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.5$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		15.0				ns	Figure 3, Figure 4
			1.10 to 1.30	6.0	12.0	17.2	5.5	21.5		
			1.40 to 1.60	5.8	11.0	15.7	5.0	20.3		
			1.65 to 1.95	5.5	10.0	14.9	4.5	19.6		
			2.30 to 2.70	5.0	9.0	14.3	4.0	18.9		
			3.00 to 3.60	4.5	. 0	14.2	3.5	18.7		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.8$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		14.0				ns	Figure 3, Figure 4
			1.10 to 1.30	5.0	8.0	14.2	5.5	18.2		
			1.40 to 1.60	4.5	7.0	12.7	4.0	17.0		
			1.65 to 1.95	4.0	6.0	11.9	3.5	16.3		
			2.30 to 2.70	3.5	5.0	11.3	3.0	15.7		
			3.00 to 3.60	3.5	5.0	11.2	2.5	14.4		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=2.5$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		12.0				ns	Figure 3, Figure 4
			1.10 to 1.30	4.0	7.0	11.3	3.5	14.9		
			1.40 to 1.60	3.5	6.0	9.8	3.0	13.6		
			1.65 to 1.95	3.0	5.0	9.1	2.5	12.0		
			2.30 to 2.70	2.5	4.0	8.5	2.0	11.3		
			3.00 to 3.60	2.5	4.0	8.3	2.0	11.1		
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=3.3$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		11.0				ns	Figure 3, Figure 4
			1.10 to 1.30	3.0	6.0	10.5	2.0	14.2		
			1.40 to 1.60	2.5	5.0	8.6	1.5	11.0		
			1.65 to 1.95	2.0	4.0	7.8	1.0	10.3		
			2.30 to 2.70	1.5	3.0	7.2	1.0	9.7		
			3.00 to 3.60	1.5	3.0	7.0	1.0	9.4		

Continued on the following page...

AC Electrical Characteristics (Continued)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc} 1}(\mathrm{~V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit	Figure
				Min.	Typ.	Max.	Min.	Max.		
$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.0$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		34.0				ns	Figure 3, Figure 4
			1.10 to 1.30	19.0	32.0	48.6	15.0	55.5		
			1.40 to 1.60	18.0	31.0	47.1	14.0	52.3		
			1.65 to 1.95	17.0	30.0	46.4	13.0	50.6		
			2.30 to 2.70	16.0	29.0	45.9	12.0	49.2		
			3.00 to 3.60	15.0	28.0	45.8	10.0	49.1		
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.2$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		22.0				ns	Figure 3, Figure 4
			1.10 to 1.30	11.0	19.0	29.0	10.0	46.5		
			1.40 to 1.60	10.0	18.0	27.5	9.0	42.6		
			1.65 to 1.95	9.0	17.0	26.7	8.0	36.7		
			2.30 to 2.70	8.5	16.0	26.1	7.0	36.0		
			3.00 to 3.60	8.0	16.0	26.0	6.0	35.9		
$\mathrm{t}_{\text {PHL }}$, $\mathrm{P}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.5$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		16.0				ns	Figure 3, Figure 4
			1.10 to 1.30	6.0	13.0	19.8	5.5	25.3		
			1.40 to 1.60	5.8	12.0	18.3	5.0	23.0		
			1.65 to 1.95	5.5	11.0	17.6	4.5	22.4		
			2.30 to 2.70	5.0	10.0	17.0	4.0	21.7		
			3.00 to 3.60	4.5	9.0	16.8	3.5	21.5		
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=1.8$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		15.0				ns	Figure 3, Figure 4
			1.10 to 1.30	5.0	11.0	16.2	5.5	20.4		
			1.40 to 1.60	4.5	10.0	14.7	4.0	19.2		
			1.65 to 1.95	4.0	9.0	13.9	3.5	18.5		
			2.30 to 2.70	3.5	8.0	13.3	3.0	17.9		
			3.00 to 3.60	3.5	8.0	13.1	2.5	17.6		
$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=2.5$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		13.0				ns	Figure 3, Figure 4
			1.10 to 1.30	4.0	8.0	12.7	3.5	15.9		
			1.40 to 1.60	3.5	7.0	11.2	3.0	14.3		
			1.65 to 1.95	3.0	6.0	10.5	2.5	13.6		
			2.30 to 2.70	2.5	5.0	9.9	2.0	12.8		
			3.00 to 3.60	2.5	5.0	9.7	2.0	12.5		
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})=3.3$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0		12.0				ns	Figure 3, Figure 4
			1.10 to 1.30	3.0	8.0	11.7	2.0	15.0		
			1.40 to 1.60	2.5	7.0	9.8	1.5	12.2		
			1.65 to 1.95	2.0	6.0	8.9	1.0	11.5		
			2.30 to 2.70	1.5	5.0	8.3	1.0	10.7		
			3.00 to 3.60	1.5	5.0	8.1	1.0	10.4		

Capacitance

Symbol	Parameter	Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \mathrm{l} \\ \mathrm{v}_{\mathrm{cC} 1}(\mathrm{~V}) \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2	pF
Cl_{10}	Input/Output Capacitance			4	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{cC} 1}, \mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}} / \mathrm{V}_{\mathrm{CC} 1}=3.6 \mathrm{~V}$	1.0 to 3.60	8	pF

Translator Power-up Sequence Recommendations

To ensure that the system does not experience unnecessary I_{cc} current draw, bus contention, or oscillations during power-up; adhere to the following guidelines. This device is designed with the output pin(s) supplied by V_{Cc} and the input pin(s) supplied by $\mathrm{V}_{\mathrm{CC} 1}$. The first recommendation is to begin by powering up the input side of the device with $\mathrm{V}_{\mathrm{cc} 1}$. The Input pin(s) should be ramped with or ahead of $\mathrm{V}_{\mathrm{CC} 1}$ or held LOW. This guards against bus contentions and oscillations as
all inputs and the input $\mathrm{V}_{\mathrm{CC} 1}$ are powered at the same time. The output $\mathrm{V}_{c c}$ can then be powered to the target voltage level to which the device will translate. The output pin(s) then translate to logic levels dictated by the output V_{CC} levels.

Upon completion of these steps, the device can be configured for the desired operation. Following these steps helps prevent possible damage to the translator device as well as other system components.

AC Loadings and Waveforms

Figure 3. AC Test Circuit

Figure 4. Waveform for Inverting and Non-Inverting Functions
Table 1. AC Load Table

Symbol	V_{cc}					
	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\mathbf{2 . 5 V} \pm 0.2 \mathrm{~V}$	$\mathbf{1 . 8 V} \pm 0.15 \mathrm{~V}$	$\mathbf{1 . 5 V} \pm 0.10 \mathrm{~V}$	$\mathbf{1 . 2 V} \pm 0.10 \mathrm{~V}$	$\mathbf{1 . 0 V}$
	1.5 V	$\mathrm{~V}_{\mathrm{cc} 1} / 2$				
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{cc}} / 2$	$\mathrm{~V}_{\mathrm{cc}} / 2$	$\mathrm{~V}_{\mathrm{cc}} / 2$	$\mathrm{~V}_{\mathrm{c}} \mathrm{C} / 2$	$\mathrm{~V}_{\mathrm{cc}} / 2$

Physical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS to EIAJ
B) AL-88A, 1996 . DINENSONS ARE IN MILLIMETERS

DIMENSIONS DO NOT INCLUDE BURRS
OR MOLD FLASH.

MAA.05AREVS

Figure 5. 5-Lead, SC70, EIAJ SC-88a, 1.25mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://hww.fairchildsemi.com/packaging/.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/products/analog/pdf/sc70-5 tr.pdf.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
P5X	Leader (Start End)	125 (Typical)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.

Tape and Reel Specification

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/products/logic/pdf/micropak tr.pdf.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
L6X	Leader (Start End)	125 (Typical)	Empty	Sealed
	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions

Figure 7. 6-Lead, MicroPak2 ${ }^{\text {TM }}$, $1 \times 1 \mathrm{~mm}$ Body, .35 mm Pitch
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://hww.fairchildsemi.com/packagingl.

Tape and Reel Specification

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/packaging/MicroPAK2 6L tr.pdf.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
FHX	Leader (Start End)	125 (Typical)	Empty	Sealed
	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

