Dual Supply, 2-Bit Voltage Translator / Isolator for I²C Applications
 FXMAR2102

Description

The FXMAR2102 is a high-performance configurable dual-voltage-supply translator for bi-directional voltage translation over a wide range of input and output voltages levels. The FXMAR2102 also works in a push- pull environment.

It is intended for use as a voltage translator between $\mathrm{I}^{2} \mathrm{C}$-Bus compliant masters and slaves. Internal $10 \mathrm{k} \Omega$ pull-up resistors are provided.

The device is designed so the A port tracks the $\mathrm{V}_{\mathrm{CCA}}$ level and the B port tracks the $\mathrm{V}_{\mathrm{CCB}}$ level. This allows for bi-directional A / B-port voltage translation between any two levels from 1.65 V to 5.5 V . $\mathrm{V}_{\mathrm{CCA}}$ can equal $\mathrm{V}_{\mathrm{CCB}}$ from 1.65 V to 5.5 V . Either V_{CC} can be powered-up first. Internal power-down control circuits place the device in 3 -state if either V_{CC} is removed.

The two ports of the device have automatic direction-sense capability. Either port may sense an input signal and transfer it as an output signal to the other port.

Features

- Bi-Directional Interface between Any Two Levels: 1.65 V to 5.5 V
- No Direction Control Needed
- Internal $10 \mathrm{k} \Omega$ Pull-Up Resistors
- System GPIO Resources Not Required when OE Tied to VCCA
- $\mathrm{I}^{2} \mathrm{C}$ Bus Isolation
- A / B Port $\mathrm{V}_{\mathrm{OL}}=175 \mathrm{mV}$ (Typical), $\mathrm{V}_{\mathrm{IL}}=150 \mathrm{mV}, \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$
- Open-Drain Inputs / Outputs
- Works in Push Pull Environment
- Accommodates Standard-Mode and Fast-Mode I ${ }^{2} \mathrm{C}$-Bus Devices
- Supports $I^{2} \mathrm{C}$ Clock Stretching \& Multi-Master
- Fully Configurable: Inputs and Outputs Track V_{CC}
- Non-Preferential Power-Up; Either V_{CC} Can Power-Up First
- Outputs Switch to 3-State if Either V_{CC} is at GND
- Tolerant Output Enable: 5 V
- Packaged in 8-Terminal Leadless MicroPak ${ }^{\text {TM }}$ ($1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$) and Ultrathin MLP ($1.2 \mathrm{~mm} \times 1.4 \mathrm{~mm}$)
- ESD Protection Exceeds:
- B Port: 8 kV HBM ESD (vs. GND \& vs. $\mathrm{V}_{\mathrm{CCB}}$)
- All Pins: 4 kV HBM ESD (per JESD22-A114)
- 2 kV CDM (per JESD22-C101)

MARKING DIAGRAM

BU = Device Code
\&K = 2-Digits Lot Run Traceability Code
\&2 = 2-Digit Date Code
\&Z = Assembly Plant Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

FXMAR2102

BLOCK DIAGRAM

Figure 1. Block Diagram, 1 of 2 Channels

FXMAR2102

PIN CONFIGURATION

Figure 2. MicroPak (Top-Through View)

Figure 3. UMLP (Top-Through View)

PIN DEFINITIONS

Pin No.	Name	
1	$\mathrm{~V}_{\text {CCA }}$	A-Side Power Supply
2,3	$\mathrm{~A}_{0}, \mathrm{~A}_{1}$	A-Side Inputs or 3-State Outputs
4	GND	Ground
5	OE	Output Enable Input
6,7	$\mathrm{~B}_{1}, \mathrm{~B}_{0}$	B-Side Inputs or 3-State Outputs
8	$\mathrm{~V}_{\text {CCB }}$	B-Side Power Supply

TRUTH TABLE

Control	Outputs
OE (Note 1)	
LOW Logic Level	Normal Operation
HIGH Logic Level	

1. If the OE pin is driven LOW, the FXMAR2102 is disabled and the A_{0}, A_{1}, B_{0}, and B_{1} pins (including dynamic drivers) are forced into 3-state and all four $10 \mathrm{k} \Omega$ internal pull-up resisters are decoupled from their respective V_{CC}.

FXMAR2102

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	Supply Voltage		-0.5	7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	A Port	-0.5	7.0	
		B Port	-0.5	7.0	
		Control Input (OE)	-0.5	7.0	
V_{O}	Output Voltage (Note 2)	A_{n} Outputs 3-State	-0.5	7.0	V
		B_{n} Outputs 3-State	-0.5	7.0	
		A_{n} Outputs Active	-0.5	$\mathrm{V}_{\mathrm{CCA}}+0.5 \mathrm{~V}$	
		B_{n} Outputs Active	-0.5	$\mathrm{V}_{\mathrm{CCB}}+0.5 \mathrm{~V}$	
IIK	DC Input Diode Current	At $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$	-	-50	mA
Iok	DC Output Diode Current	At $\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-	-50	mA
		At $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	-	+50	
$\mathrm{IOH} / \mathrm{IOL}$	DC Output Source/Sink Current		-50	+50	mA
I_{cc}	DC $\mathrm{V}_{\text {CC }}$ or Ground Current per Supply Pin		-	± 100	mA
P_{D}	Power Dissipation	At 400 KHz	-	0.129	mW
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Capability	Human Body Model, B-Port Pins	-	8	kV
		Human Body Model, All Pins (JESD22-A114)	-	4	
		Charged Device Mode, JESD22-C101	-	2	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. I_{0} absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	Power Supply Operating		1.65	5.50	V
V_{IN}	Input Voltage (Note 3)	A-Port	0	5.5	V
		B-Port	0	5.5	
		Control Input (OE)	0	$\mathrm{V}_{\text {CCA }}$	
Θ_{JA}	Thermal Resistance	8-Lead MicroPak	-	279	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		8-Lead Ultrathin MLP	-	302	
T_{A}	Free Air Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
3. All unused inputs and I / O pins must be held at $\mathrm{V}_{\mathrm{CCI}}$ or GND . $\mathrm{V}_{\mathrm{CCI}}$ is the V_{CC} associated with the input side.

FUNCTIONAL DESCRIPTION

Power-Up / Power-Down Sequencing

FXM translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 V , outputs are in a high-impedance state. The control input (OE) is designed to track the $\mathrm{V}_{\mathrm{CCA}}$ supply. A pull-down resistor tying OE to GND should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/-down. The size of the pull-down resistor is based upon the current-sinking capability of the device driving the OE pin.

The recommended power-up sequence is:

1. Apply power to the first V_{CC}.
2. Apply power to the second V_{CC}.
3. Drive the OE input HIGH to enable the device.

The recommended power-down sequence is:

1. Drive OE input LOW to disable the device.
2. Remove power from either V_{CC}.
3. Remove power from the other V_{CC}.

NOTE:
4. Alternatively, the OE pin can be hardwired to $\mathrm{V}_{\mathrm{CCA}}$ to save GPIO pins. If OE is hardwired to $\mathrm{V}_{\mathrm{CCA}}$, either V_{CC} can be powered up or down first.

APPLICATION CIRCUIT

Figure 4. Application Circuit

APPLICATION NOTES

The FXMAR2102 has open-drain I/Os and includes a total of four $10 \mathrm{k} \Omega$ internal pull-up resistors $\left(\mathrm{R}_{\mathrm{PU}}\right)$ on each of the four data I/O pins, as shown in Figure 4. If a pair of data I / O pins $\left(A_{n} / B_{n}\right)$ is not used, both pins should disconnected, eliminating unwanted current flow through the internal RPUs. External RPUs can be added to the I/Os to reduce the total RPU value, depending on the total bus capacitance. The designer is free to lower the total pull-up resistor value to meet the maximum $\mathrm{I}^{2} \mathrm{C}$ edge rate per the $\mathrm{I}^{2} \mathrm{C}$ specification (UM10204 rev. 03, June 19, 2007). For example, according to the $\mathrm{I}^{2} \mathrm{C}$ specification, the maximum edge rate ($30 \%-70 \%$) during Fast Mode ($400 \mathrm{kbit} / \mathrm{s}$) is 300 ns . If the bus capacitance is approaching the maximum 400 pF , a lower total R_{PU} value helps keep the rise time below 300 ns (Fast Mode). Likewise, the $\mathrm{I}^{2} \mathrm{C}$ specification also specifies a minimum Serial Clock Line High Time of 600 ns during Fast Mode (400 kHz). Lowering the total RPU also helps increase the SCL High Time. If the bus capacitance approaches 400 pF , it may make sense to use the FXMA2102, which does not contain internal RPUs. Then calculate the ideal external R_{PU} value.

NOTE:

5. Section 7.1 of the $\mathrm{I}^{2} \mathrm{C}$ specification provides an excellent guideline for pull-up resistor sizing.

Theory of Operation

The FXMAR2102 is designed for high-performance level shifting and buffer / repeating in an $\mathrm{I}^{2} \mathrm{C}$ application. Figure 1 shows that each bi-directional channel contains two series-Npassgates and two dynamic drivers. This hybrid architecture is highly beneficial in an $\mathrm{I}^{2} \mathrm{C}$ application where auto-direction is a necessity.

For example, during the following three $\mathrm{I}^{2} \mathrm{C}$ protocol events:

- Clock Stretching
- Slave's ACK Bit (9th bit $=0)$ following a Master's Write Bit ($8^{\text {th }}$ bit $=0$)
- Clock Synchronization and Multi-Master Arbitration

The bus direction needs to change from master-to-slave to slave-to-master without the occurrence of an edge. If there is an $\mathrm{I}^{2} \mathrm{C}$ translator between the master and slave in these examples, the $\mathrm{I}^{2} \mathrm{C}$ translator must change direction when both A and B ports are LOW. The Npassgates can accomplish this task very efficiently because, when both A and B ports are LOW, the Npassgates act as a low-resistive short between the A and B ports.

Due to $\mathrm{I}^{2} \mathrm{C}$'s open-drain topology, $\mathrm{I}^{2} \mathrm{C}$ masters and slaves are not push/pull drivers. Logic LOWs are "pulled down" (Isink), while logic HIGHs are "let go" (3-state). For example, when the master lets go of SCL (SCL always comes from the master), the rise time of SCL is largely determined by the RC time constant, where $\mathrm{R}=\mathrm{RPU}$ and $\mathrm{C}=$ the bus capacitance. If the FXMAR2102 is attached to the master [on the A port] and there is a slave on the B port,
the Npassgates act as a low-resistive short between both ports until either of the port's $\mathrm{V}_{\mathrm{CC}} / 2$ thresholds are reached. After the RC time constant has reached the $\mathrm{V}_{\mathrm{CC}} / 2$ threshold of either port, the port's edge detector triggers both dynamic drivers to drive their respective ports in the LOW-to-HIGH (LH) direction, accelerating the rising edge. The resulting rise time resembles the scope shot in Figure 5. Effectively, two distinct slew rates appear in rise time. The first slew rate (slower) is the RC time constant of the bus. The second slew rate (much faster) is the dynamic driver accelerating the edge.

If both the A and B ports of the translator are HIGH , a high-impedance path exists between the A and B ports because both the Npassgates are turned off. If a master or slave device decides to pull SCL or SDA LOW, that device's driver pulls down ($\mathrm{I}_{\text {sink }}$) SCL or SDA until the edge reaches the A or B port $\mathrm{V}_{\mathrm{CC}} / 2$ threshold. When either the A or B port threshold is reached, the port's edge detector triggers both dynamic drivers to drive their respective ports in the HIGH-to-LOW (HL) direction, accelerating the falling edge.

Figure 5. Waveform C: $\mathbf{6 0 0} \mathrm{pF}$, Total $\mathrm{R}_{\mathrm{PU}}: \mathbf{2 . 2} \mathbf{~ k} \Omega$

V_{OL} vs. I_{L}

The $\mathrm{I}^{2} \mathrm{C}$ specification mandates a maximum V_{IL} (I_{OL} of 3 mA) of $\mathrm{V}_{\mathrm{CC}} \cdot 0.3$ and a maximum V_{OL} of 0.4 V . If there is a master on the A port of an $\mathrm{I}^{2} \mathrm{C}$ translator with a V_{CC} of 1.65 V and a slave on the $\mathrm{I}^{2} \mathrm{C}$ translator B port with a V_{CC} of 3.3 V , the maximum V_{IL} of the master is $(1.65 \mathrm{~V} \mathrm{x} 0.3)$ 495 mV . The slave could legally transmit a valid logic LOW of 0.4 V to the master.

If the $\mathrm{I}^{2} \mathrm{C}$ translator's channel resistance is too high, the voltage drop across the translator could present a V_{IL} to the master greater than 495 mV . To complicate matters, the $\mathrm{I}^{2} \mathrm{C}$ specification states that 6 mA of I_{OL} is recommended for bus
capacitances approaching 400 pF . More I_{OL} increases the voltage drop across the $\mathrm{I}^{2} \mathrm{C}$ translator. The $\mathrm{I}^{2} \mathrm{C}$ application benefits when $\mathrm{I}^{2} \mathrm{C}$ translators exhibit low V_{OL} performance.

Figure 6 depicts typical FXMAR2102 Vol performance vs. the competition, given a $0.4 \mathrm{~V}_{\mathrm{IL}}$.

Figure 6. Device Comparison

$\mathbf{I}^{2} \mathbf{C}$-Bus Isolation

The FXMAR2102 supports $I^{2} \mathrm{C}$-Bus isolation for the following conditions:

- Bus isolation if bus clear
- Bus isolation if either V_{CC} goes to ground

Bus Clear

Because the $\mathrm{I}^{2} \mathrm{C}$ specification defines the minimum SCL frequency of DC, the SCL signal can be held LOW forever; however, this condition shuts down the $\mathrm{I}^{2} \mathrm{C}$ bus. The $\mathrm{I}^{2} \mathrm{C}$ specification refers to this condition as "Bus Clear". In Figure 7; if slave \#2 holds down SCL forever, the master and slave \#1 are not able to communicate because the FXMAR2102 passes the SCL stuck-LOW condition from
slave \#2 to slave \#1 and as the master. However, if the OE pin is pulled LOW (disabled), both ports (A and B) are 3 -stated. This results in the FXMAR2102 isolating slave \#2 from the master and slave \#1, allowing full communication between the master and slave \#1.
$V_{C C}$ to $G N D$
If slave \#2 is a camera that is suddenly removed from the $\mathrm{I}^{2} \mathrm{C}$ bus, resulting in $\mathrm{V}_{\mathrm{CCB}}$ transitioning from a valid V_{CC} ($1.65 \mathrm{~V}-5.5 \mathrm{~V}$) to 0 V ; the FXMAR2102 automatically forces SCL and SDA on both its A and B ports into 3-state. Once $\mathrm{V}_{\mathrm{CCB}}$ has reached 0 V , full $\mathrm{I}^{2} \mathrm{C}$ communication between the master and slave \#1 remains undisturbed.

Figure 7. Bus Isolation

DC ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter		Condition	$\mathrm{V}_{\text {cca }}(\mathrm{V})$	$\mathrm{V}_{\text {ccB }}(\mathrm{V})$	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IHA }}$	High Level Input Voltage A	Data Inputs A_{n}		1.65-5.50	1.65-5.50	$\mathrm{V}_{\mathrm{CCA}}-0.4$	-	-	V
		Control Input OE		1.65-5.50	1.65-5.50	$0.7 \times \mathrm{V}_{\text {CCA }}$	-	-	
$\mathrm{V}_{\text {IHB }}$	High Level Input Voltage B	Data Inputs B_{n}		1.65-5.50	1.65-5.50	$\mathrm{V}_{\mathrm{CCB}}-0.4$	-	-	V
VILA	Low Level Input Voltage A	Data Inputs A_{n}		1.65-5.50	1.65-5.50	-	-	0.4	V
		Control Input OE		1.65-5.50	1.65-5.50	-	-	$0.3 \times \mathrm{V}_{\mathrm{CCA}}$	
$\mathrm{V}_{\text {ILB }}$	Low Level Input Voltage B	Data Inputs B_{n}		1.65-5.50	1.65-5.50	-	-	0.4	V
V OL	Low Level Output Voltage	$\mathrm{V}_{\mathrm{IL}}=0.15 \mathrm{~V}$		1.65-5.50	1.65-5.50	-	-	0.4	V
		IOL $=6 \mathrm{~mA}$					-		
IL	Input Leakage Current	Control Input OE, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCA}}$ or GND		1.65-5.50	1.65-5.50	-	-	± 1.0	$\mu \mathrm{A}$
IoFF	Power-Off Leakage Current	A_{n}	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	0	5.50	-	-	± 2.0	$\mu \mathrm{A}$
		B_{n}	$\begin{aligned} & \mathrm{V}_{\text {IN }} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	5.50	0	-	-	± 2.0	
Ioz	3-State Output Leakage (Note 7)	A_{n}, B_{n}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	5.50	5.50	-	-	± 2.0	$\mu \mathrm{A}$
		A_{n}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{OE}=\text { Don't Care } \end{aligned}$	5.50	0	-	-	± 2.0	
		B_{n}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{OE}=\text { Don't Care } \end{aligned}$	0	5.50	-	-	± 2.0	
$\mathrm{I}_{\mathrm{CcA} / \mathrm{B}}$	Quiescent Supply Current (Note 8, 9)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCI}} \text { or Floating, } \mathrm{I}_{\mathrm{O}}=0$		1.65-5.50	1.65-5.50	-	-	5.0	$\mu \mathrm{A}$
I CCZ	Quiescent Supply Current (Note 8)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCI}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		1.65-5.50	1.65-5.50	-	-	5.0	$\mu \mathrm{A}$
$I_{\text {cCA }}$	Quiescent Supply Current (Note 7)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{OE}=\text { Don't Care, } \mathrm{B}_{\mathrm{n}} \text { to } \mathrm{A}_{n} \end{aligned}$		0	1.65-5.50	-	-	-2.0	$\mu \mathrm{A}$
				1.65-5.50	0	-	-	2.0	
$\mathrm{I}_{\text {CCB }}$	Quiescent Supply Current (Note 7)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \text { or GND, } \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{OE}=\text { Don't Care, } \mathrm{A}_{\mathrm{n}} \text { to } \mathrm{B}_{\mathrm{n}} \end{aligned}$		1.65-5.50	0	-	-	-2.0	$\mu \mathrm{A}$
				0	1.65-5.50	-	-	2.0	
R_{PU}	Resistor Pull-up Value	VCCA \& VCCB Sides		1.65-5.50	1.65-5.50	-	10	-	Ω

6. This table contains the output voltage for static conditions. Dynamic drive specifications are given in Dynamic Output Electrical Characteristics.
7. "Don't Care" indicates any valid logic level.
8. $\mathrm{V}_{\mathrm{CCI}}$ is the V_{CC} associated with the input side.
9. Reflects current per supply, $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$.

FXMAR2102

DYNAMIC OUTPUT ELECTRICAL CHARACTERISTICS

OUTPUT RISE / FALL TIME (Note 10) (Output load: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{PU}}=\mathrm{NC}$, push / pull driver, and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.)

Symbol	Parameter	$\mathrm{V}_{\text {cco }}$ (Note 11)				Unit
		4.5 to 5.5 V	3.0 to 3.6 V	2.3 to 2.7 V	1.65 to 1.95 V	
		Typ	Typ	Typ	Typ	
$\mathrm{t}_{\text {rise }}$	Output Rise Time; A Port, B Port (Note 12)	3	4	5	7	ns
$\mathrm{t}_{\text {fall }}$	Output Fall Time; A Port, B Port (Note 13)	1	1	1	1	ns

10. Output rise and fall times guaranteed by design simulation and characterization; not production tested.
11. $\mathrm{V}_{\mathrm{CCO}}$ is the V_{CC} associated with the output side.
12. See Figure 12.
13. See Figure 13.

DYNAMIC OUTPUT ELECTRICAL CHARACTERISTICS

MAXIMUM DATA RATE (Note 14) (Output load: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{PU}}=\mathrm{NC}$, push / pull driver, and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.)

$\mathrm{V}_{\text {cca }}$	Direction	$\mathrm{V}_{\text {CCB }}$				Unit
		4.5 to 5.5 V	3.0 to 3.6 V	2.3 to 2.7 V	1.65 to 1.95 V	
		Minimums				
4.5 V to 5.5 V	A to B	50	50	40	30	MHz
	B to A	50	50	40	40	
3.0 V to 3.6 V	A to B	50	50	40	19	MHz
	B to A	50	50	40	40	
2.3 V to 2.7 V	A to B	40	40	30	19	MHz
	B to A	40	40	30	30	
1.65 V to 1.95 V	A to B	40	40	30	19	MHz
	B to A	30	30	19	19	

14. F-toggle guaranteed by design simulation; not production tested.

FXMAR2102

AC CHARACTERISTICS (Note 15) (Output load: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{PU}}=\mathrm{NC}$, push $/$ pull driver, and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.)

Symbol	Parameter	$\mathrm{V}_{\text {CCB }}$								Unit
		4.5 to 5.5 V		3.0 to 3.6 V		2.3 to 2.7 V		1.65 to 1.95 V		
		Typ	Max	Typ	Max	Typ	Max	Typ	Max	

$\mathrm{V}_{\text {CCA }}=4.5$ to 5.5 V

$\mathrm{t}_{\text {PLH }}$	A to B	1	3	1	3	1	3	1	3	ns
	B to A	1	3	2	4	3	5	4	7	
${ }_{\text {tPHL }}$	A to B	2	4	3	5	4	6	5	7	ns
	B to A	2	4	2	5	2	6	5	7	
$\mathrm{t}_{\text {PZL }}$	OE to A	4	5	6	10	5	9	7	15	ns
	OE to B	3	5	4	7	5	8	10	15	
$t_{\text {PLZ }}$	OE to A	65	100	65	105	65	105	65	105	ns
	OE to B	5	9	6	10	7	12	9	16	
$\mathrm{t}_{\text {skew }}$	A Port, B Port (Note 16)	0.50	1.50	0.50	1.00	0.50	1.00	0.50	1.00	ns

$\mathrm{V}_{\mathrm{CCA}}=3.0$ to 3.6 V

tplh	A to B	2.0	5.0	1.5	3.0	1.5	3.0	1.5	3.0	ns
	B to A	1.5	3.0	1.5	4.0	2.0	6.0	3.0	9.0	
$\mathrm{t}_{\text {PHL }}$	A to B	2.0	4.0	2.0	4.0	2.0	5.0	3.0	5.0	ns
	B to A	2.0	4.0	2.0	4.0	2.0	5.0	3.0	5.0	
tpzL	OE to A	4.0	8.0	5.0	9.0	6.0	11.0	7.0	15.0	ns
	OE to B	4.0	8.0	6.0	9.0	8.0	11.0	10.0	14.0	
tplz	OE to A	100	115	100	115	100	115	100	115	ns
	OE to B	5	10	4	8	5	10	9	15	
$\mathrm{t}_{\text {skew }}$	A Port, B Port (Note 16)	0.5	1.5	0.5	1.0	0.5	1.0	0.5	1.0	ns

$\mathrm{V}_{\mathrm{CCA}}=2.3$ to 2.7 V

$\mathrm{t}_{\text {PLH }}$	A to B	2.5	5.0	2.5	5.0	2.0	4.0	1.0	3.0	ns
	B to A	1.5	3.0	2.0	4.0	3.0	6.0	5.0	10.0	
$t_{\text {PHL }}$	A to B	2.0	5.0	2.0	5.0	2.0	5.0	3.0	6.0	ns
	B to A	2.0	5.0	2.0	5.0	2.0	5.0	3.0	6.0	
$\mathrm{t}_{\mathrm{PZL}}$	OE to A	5.0	10.0	5.0	10.0	6.0	12.0	9.0	18.0	ns
	OE to B	4.0	8.0	4.5	9.0	5.0	10.0	9.0	18.0	
$t_{\text {PLZ }}$	OE to A	100	115	100	115	100	115	100	115	ns
	OE to B	65	110	65	110	65	115	12	25	
$\mathrm{t}_{\text {skew }}$	A Port, B Port (Note 16)	0.5	1.5	0.5	1.0	0.5	1.0	0.5	1.0	ns

$\mathrm{V}_{\text {CCA }}=1.65$ to 1.95 V

$\mathrm{t}_{\text {PLH }}$	A to B	4	7	4	7	5	8	5	10	ns
	B to A	1.0	2.0	1.0	2.0	1.5	3.0	5.0	10.0	
${ }_{\text {tPHL }}$	A to B	5	8	3	7	3	7	3	7	ns
	B to A	4	8	3	7	3	7	3	7	
$\mathrm{t}_{\text {PZL }}$	OE to A	11	15	11	14	14	28	14	23	ns
	OE to B	6	14	6	14	6	14	9	16	
$t_{\text {PLZ }}$	OE to A	75	115	75	115	75	115	75	115	ns
	OE to B	75	115	75	115	75	115	75	115	
$\mathrm{t}_{\text {skew }}$	A Port, B Port (Note 16)	0.5	1.5	0.5	1.0	0.5	1.0	0.5	1.0	ns

15. AC characteristics are guaranteed by design and characterization.
16. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port $\left(A_{n}\right.$ or $\left.B_{n}\right)$ and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 15). Skew is guaranteed; not production tested.

FXMAR2102

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Symbol	Parameter	Condition	Typ	Unit
C_{IN}	Input Capacitance Control Pin (OE)	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=\mathrm{GND}$	2.2	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance, $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=5.0 \mathrm{~V}, \mathrm{OE}=\mathrm{GND}$	13	pF

Figure 8. AC Test Circuit

Table 1. PROPAGATION DELAY TABLE (Note 17)

Test	Input Signal	Output Enable Control
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Data Pulses	$\mathrm{V}_{\mathrm{CCA}}$
$\mathrm{t}_{\text {PZL }}\left(\mathrm{OE}\right.$ to $\left.\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$	0 V	LOW to HIGH Switch
$\mathrm{t}_{\text {PLZ }}\left(\mathrm{OE}\right.$ to $\left.\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$	0 V	HIGH to LOW Switch

17. For $t_{\text {PZL }}$ and $t_{\text {PLZ }}$ testing, an external $2.2 \mathrm{k} \Omega$ pull-up resister to $\mathrm{V}_{\mathrm{CCO}}$ is required in order to force the I / O pins high while OE is Low because when OE is low, the internal $10 \mathrm{k} \Omega$ RPUs are decoupled from their respective VCC's.

Table 2. AC LOAD TABLE

$\mathbf{V}_{\text {cco }}$	\mathbf{C}_{L}	\mathbf{R}_{L}
$1.8 \pm 0.15 \mathrm{~V}$	50 pF	NC
$2.5 \pm 0.2 \mathrm{~V}$	50 pF	NC
$3.3 \pm 0.3 \mathrm{~V}$	50 pF	NC
$5.0 \pm 0.5 \mathrm{~V}$	50 pF	NC

FXMAR2102

TIMING DIAGRAMS

Figure 9. Waveform for Inverting and Non-Inverting Functions (Note 18)

Figure 11. 3-STATE Output High Enable Time
(Note 18)

Figure 12. Active Output Rise Time

Figure 14. F-Toggle Rate

NOTES:
18. Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90% at $\mathrm{V}_{I N}=1.65 \mathrm{~V}$ to 1.95 V ; Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90% at $\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}$ to 2.7 V ; Input $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$ to 3.6 V only; Input $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ to 5.5 V only. 19. $\mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCA}}$ for control pin OE or $\mathrm{V}_{\mathrm{mi}}=\left(\mathrm{V}_{\mathrm{CCA}} / 2\right)$.

Figure 10. 3-STATE Output Low Enable Time (Note 18)

Symbol	V_{CC}
$\mathrm{V}_{\mathrm{mi}}($ Note 19$)$	$\mathrm{V}_{\mathrm{CCI}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CCO}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$0.5 \times \mathrm{V}_{\mathrm{CCO}}$
V_{Y}	$0.1 \times \mathrm{V}_{\mathrm{CCO}}$

Figure 13. Active Output Fall Time

Figure 15. Output Skew Time

ORDERING INFORMATION

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method ${ }^{\dagger}$
FXMAR2102L8X	-40 to $+85^{\circ} \mathrm{C}$	BU	8-Lead MicroPak, 1.6 mm Wide (Pb -Free)	5000 / Tape \& Reel
FXMAR2102UMX			8-Lead Ultrathin MLP, $1.2 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ (Pb -Free)	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 4:1

TDP VIEW

$$
\begin{aligned}
& \text { XX }=\text { Specific Device Code } \\
& M \quad=\text { Date Code }
\end{aligned}
$$

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

UQFN8, 1.4x1.2, 0.4P
 CASE 523AS
 ISSUE B

DATE 19 AUG 2021
NOTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 1994.
2. CINTRILLING DIMENSION: MILLIMETERS
3. DIMENSIIN b APPLIES TD PLATED TERMINAL and is measured between 0.15 and $0.25 M M$ FRDM THE TERMINAL TIP.
4. REFER TO SPECIFIC DEVICE DATA SHEET FOR pin 1 ndtch lication.
 alternate canstruction

SEATING
PLANE

DETAIL A
A

	MILLIMETERS	
DIM	MIN.	MAX.
A	0.45	0.55
A1	0.00	0.05
A3	0.13	
REF		
b	0.15	0.25
D	1.40	

alternate canstructions

DETAIL C alternate construction note 4

RECDMMENDED
MLUNTING FIDTPRINT *

* For additional information on our Pb-Free strategy and soldering details, please download the aN Semiconductor Soldering and Mounting Techniques Reference Manual, SLLDERRM/D.

| DOCUMENT NUMBER: | 98AON58906E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UQFN8, 1.4X1.2, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SIDE VIEW

RECOMMENDED

LAND PATTERN

NOTES:
A. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
(0.15)

| DOCUMENT NUMBER: | 98AON13591G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UQFN8 1.6X1.6, 0.5P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ

