6-Pin DIP High Voltage Photodarlington Optocouplers

H11G1M, H11G2M

Description

The H11G1M and H11G2M are photodarlington-type optically coupled optocouplers. These devices have a gallium arsenide infrared emitting diode coupled with a silicon darlington connected phototransistor which has an integral base-emitter resistor to optimize elevated temperature characteristics.

Features

- High BV ${ }_{\text {CEO }}$:
- 100 V Minimum for H11G1M
- 80 V Minimum for H11G2M
- High Sensitivity to Low Input Current (Minimum 500% CTR at $\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$)
- Low Leakage Current at Elevated Temperature
(Maximum $100 \mu \mathrm{~A}$ at $80^{\circ} \mathrm{C}$)
- Safety and Regulatory Approvals:
- UL1577, 4,170 VAC RMS for 1 Minute
- DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Application

- CMOS Logic Interface
- Telephone Ring Detector
- Low Input TTL Interface
- Power Supply Isolation
- Replace Pulse Transformer

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

H11G1 $=$	Specific Device Code
V	$=$ DIN EN/IEC60747-5-5 Option (only
	appears on component ordered with
this option)	
X	$=$ One-Digit Year Code
YY	$=$ Digit Work Week
Q	$=$ Assembly Package Code

SCHEMATIC

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

SAFETY AND INSULATION RATINGS

(As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)

Parameter		Characteristics
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	<150 V ${ }_{\text {RMS }}$	I-IV
	$<300 \mathrm{~V}_{\text {RMS }}$	I-IV
Climatic Classification		55/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
$V_{P R}$	Input-to-Output Test Voltage, Method A, $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1360	$V_{\text {peak }}$
	Input-to-Output Test Voltage, Method B, $\mathrm{V}_{\mathrm{IORM}} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100% Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1594	$\mathrm{V}_{\text {peak }}$
$\mathrm{V}_{\text {IORM }}$	Maximum Working Insulation Voltage	850	$\mathrm{V}_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over-Voltage	6000	$V_{\text {peak }}$
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
T_{S}	Case Temperature (Note 1)	175	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {S,INPUT }}$	Input Current (Note 1)	350	mA
$\mathrm{P}_{\text {S, OUTPUT }}$	Output Power (Note 1)	800	mW
R_{IO}	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$ (Note 1)	$>10^{9}$	Ω

1. Safety limit values - maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Max	Unit

TOTAL DEVICE

$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {OPR }}$	Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature	260 for 10 seconds	${ }^{\circ} \mathrm{C}$
P_{D}	Total Device Power Dissipation $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	290	mW
	Derate Above $25^{\circ} \mathrm{C}$	3.5	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

EMITTER

I_{F}	DC / Average Forward Input Current	60	mA
$\mathrm{~V}_{\mathrm{R}}$	Reverse Input Voltage	6.0	V
$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	Forward Current - Peak $(1 \mu \mathrm{~s}$ pulse, 300 pps$)$	3.0	A
P_{D}	LED Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	90	mW
	Derate Above $25^{\circ} \mathrm{C}$	1.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DETECTOR

$\mathrm{V}_{\text {CEO }}$	Collector Emitter Voltage	H11G1M	100	V
		H11G2M	80	V
P_{D}	Photodetector Power Dissipation $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	200	mW	
	Derate Above $25^{\circ} \mathrm{C}$	2.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS - INDIVIDUAL COMPONENT CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
EMITTER						
V_{F}	Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	1.3	1.5	V
$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$	Forward Voltage Temperature Coefficient		-	-1.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
BV_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	3.0	25	-	V
CJ	Junction Capacitance	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	50	-	pF
		$\mathrm{V}_{\mathrm{F}}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	65	-	pF
I_{R}	Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V}$	-	0.001	10	$\mu \mathrm{A}$

DETECTOR

$\mathrm{BV}_{\text {CEO }}$	Breakdown Voltage Collector to Emitter	H11G1M	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$	100	-	-	V
		H11G2M		80	-	-	V
$\mathrm{BV}_{\mathrm{CBO}}$	Collector to Base	H11G1M	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	100	-	-	V
		H11G2M		80	-	-	V
$\mathrm{BV}_{\text {Ebo }}$	Emitter Base			7	10	-	V
$I_{\text {cee }}$	Leakage Current Collector to Emitter	H11G1M	$\mathrm{V}_{\mathrm{CE}}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	-	-	100	nA
		H11G2M	$\mathrm{V}_{\text {CE }}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	-	-	100	nA
		H11G1M	$\mathrm{V}_{\text {CE }}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	-	-	100	$\mu \mathrm{A}$
		H11G2M	$\mathrm{V}_{\text {CE }}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$	-	-	100	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS - TRANSFER CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
EMITTER						
CTR	Current Transfer Ratio, Collector to Emitter	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$	$\begin{gathered} 100 \\ (1000) \end{gathered}$	-	-	mA (\%)
		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	5 (500)	-	-	mA (\%)
$\mathrm{V}_{\text {CE (SAT) }}$	Saturation Voltage	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$,	-	0.85	1.0	V
		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$,	-	0.75	1.0	V

SWITCHING TIMES

t_{ON}	Turn on Time	$\begin{aligned} & R_{L}=100 \Omega, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\ & \mathrm{f} \leq 30 \mathrm{~Hz} \text {, Pulse Width } \leq 300 \mu \mathrm{~s} \end{aligned}$	-	5	-	$\mu \mathrm{S}$
toff	Turn off Time		-	100	-	$\mu \mathrm{s}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS - ISOLATION CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage	$\mathrm{t}=1$ Minute	4170	-	-	$\mathrm{VAC}_{\mathrm{RMS}}$
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	0.2	-	pF
$\mathrm{R}_{\text {ISO }}$	Isolation Resistance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}= \pm 500 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10^{11}	-	-	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CURVES

Figure 1. Output Current vs. Input Current

V_{CE}, COLLECTOR-EMITTER VOLTAGE (V)
Figure 3. Output Current vs. Collector-Emitter Voltage

Figure 2. Normalized Output Current vs. Temperature

Figure 4. Collector-Emitter Dark Current vs. Ambient Temperature

Figure 5. Input Current vs. Total Switching Speed (Typical Values)

H11G1M, H11G2M

REFLOW PROFILE

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	$150^{\circ} \mathrm{C}$
Temperature Max. (Tsmax)	$200^{\circ} \mathrm{C}$
Time (t_{S}) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t_{L} to t_{P})	$3^{\circ} \mathrm{C} /$ second max.
Liquidous Temperature (T_{L})	$217^{\circ} \mathrm{C}$
Time (t_{L}) Maintained Above (T_{L})	60-150 seconds
Peak Body Package Temperature	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time (t_{p}) within $5^{\circ} \mathrm{C}$ of $260^{\circ} \mathrm{C}$	30 seconds
Ramp-down Rate (T_{P} to T_{L})	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 minutes max.

Figure 6. Reflow Profile

H11G1M, H11G2M

ORDERING INFORMATION

Part Number	Package	Shipping †
H11G1M	DIP 6-Pin	50 Units / Tube
H11G1SM	SMT 6-Pin (Lead Bend)	50 Units / Tube
H11G1SR2M	SMT 6-Pin (Lead Bend)	1000 / Tape \& Reel
H11G1VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	50 Units / Tube
H11G1SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	50 Units / Tube
H11G1SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	1000 / Tape \& Reel
H11G1TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	50 Units / Tube

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PDIP6 8.51x6.35, 2.54P
CASE 646BX ISSUE O

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13449G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 8.51X6.35, 2.54P | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP6 8.51x6.35, 2.54P
CASE 646BY
ISSUE A
DATE 15 JUL 2019

| DOCUMENT NUMBER: | 98AON13450G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 8.51x6.35, 2.54P | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

| DOCUMENT NUMBER: | 98AON13451G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP6 8.51X6.35, 2.54P | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S SFH615AGR-X007T PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2581L2-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY174X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPCA11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D11066AA WPPC-D21068ED

